MMC : MOZART Management Console

User Manual

EEMEDAMTEC2AES UCR (F)E0|Ho A SR HA A MEH S| 10| DAL R0 3|7, 21 &, A2 B Z S S LI

)

This material was prepared by VMS Solutions, solely for the use of our clients, and it is not be relied on by any third party without VMS Solutions written consent.

MOZART Management
Console(ENG)

Level 1
INTRODUCTION
MMC Overview

Mozart Model Overview

Job Type
Job
Trigger
Shortcut

Introduction of project

and Deploy Management

SERVER &
CLIENTSETTINGS

Server & Client Setting_

Overview

Model Download Setting

AutoUpdate Setting

LocalLicense Service
Concepts

MMC USER GUIDE

Server Management

ProjectManagement

MOZART Management Console(ENG)

Extended Arguments

Managing_Shortcut

Local License Service

Concepts

Model Download
Setting

AutoUpdate Setting

Server Management

Level 3

Mozart Model Overview

Job Management

Trigger Management

Mozart Server Installation

Manifest Editor

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#7d761c0b017a4789a28fc0eb4a972000

How to Use Job How to check Server
Scheduler Information

How to check server
Information

How to Manage Job
Type

Extended Arguments

Extended Arguments

Job Management

Model and Data to Temp_

Trigger Management

Folder to Run Trigger

Run Trigger from Another

Domain/Execution DLL
Version

Dependent Trigger_
Example

How to Use Monitoring_
View

Data Pre-loading

Monitoring

Trigger Performance

How to Use Backup

User Account and
Authorization Mozart Server
Installation

Managing_Shortcut

MOZART Management Console(ENG)

INTRODUCTION

MMC Overview

MOZART Management Console(MMC) is a MOZART Server management tool. One
of the features in MMC is job scheduling which user can schedule jobs to the server
to run models developed from MOZART IDE, sending e-mails or to run certain
programs. These jobs can be triggered on a certain time or start/end of events.
Other features of MMC are registering jobs, uploading model files, history
management and distribution management

Main Concept of MOZART Job Scheduling

Job Scheduling consists of three management items like Job Type, Job, and Trigger.

Job Type

Job Type is type of Job that can be executed by Job Scheduler. There are three job
types such as sending e-mails, running a program and Simple, Model, Collaboration
tasks developed through MOZART. Among these three tasks, Model and
Collaboration Task execution contents depend on target Model(check MOZART
Model Overview) and arguments so Job Type has to be specified in advance. Only
Simple Task does not need to be pre-defined because the task is not based on
Model. (How to manage Job Type)

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b9c7255b5c6d4a869cccceae5537e904

Job

Job is an execution object task configured with Job Type parameters. Jobs can only
be triggered. JobType can be configured as several Jobs that works differently
according to Argument configuration. As a summary, JobType and Job has 1 : N
relationship. Job type for sending e-mail message for instance can have multiple
jobs to send e-mails if the arguments for contact point and contents are different.
(How to manage Job)

Trigger

Trigger is a set of information that defines conditions and its execution method for
executing target job. Trigger can define and create a target job and its execution
condition. Job should be registered by MMC and its Job condition can be defined in
two ways such as time-based or event-based. (How to manage Trigger)

+ Time Scheduler(time-based) : Triggers job on a specific time or in a cycle.

+ Condition(event-based) : Triggers job according to start/end of other trigger
events.

The following figure illustrates the relationship among main concepts of job
scheduling.

JobType H———0g Job HH——<] Trigger

Job Type

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3

Job Type is a type of job that can be performed by Job Scheduler. Job Type has
Arguments that determine the execution method. Job Type can be managed by
the Edit Job Type menu on the Job Management window. You also can select a
job type when defining a Job.

The following sections are descriptions of the basic job types provided by the
MOZART Job Scheduler.

Sending e-mail ($sendmail)

This job type is for sending an e-mail when it is executed. You should specify the
sender, recipient, subject, body and attachments in the Job Type Arguments.
Furthermore, you also configure the Outgoing Mail Server (SMTP). For
administrative purposes, you may set it for sending e-mails when certain jobs fail
to run by MMC.

Executing Program ($exec)

It starts a program or script. If you want to execute the program or script specified
that the command line arguments are used, you can set these arguments in the
“Add arguments (optional) text box”. In the “Start in (optional) text box”, you can
specify a working directory on the command line where you run the program or
script. This directory should be a path for program/script file or the file path used
for the executable file. Programs that are built into Windows and executable files
made by users are all executable if a user has a permission for accessing them.

Model Task ($model)

Model Task is a Job Type for executing model-based tasks developed by
MOZART IDE. The Model Task type has default arguments (see Extended
Arguments) for setting the model's behavior (see MOZART Model Overview).
The most basic argument for execution is the model information, which specifies
a model in the Working Folder of the Server. The model to be executed defines

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b9c7255b5c6d4a869cccceae5537e904

the arguments to be set for execution as internal arguments, and these
arguments should be set when defining the task.

Collaboration Task ($cola)

The Collaboration Task is a task that enables multiple tasks to collaborate with
others through communication between tasks at the time of execution. You need
to select the base model and set other models for the collaboration. (see_
Extended Arguments)

MOZART Model Overview

MOZART Model is a set of Data that includes definitions about Input/Output data
Schema, Query, Data access information that are used in a logic implemented
through MOZART, and Arguments that are used for logic control. When a logic is
implemented, Schema and Arguments are used. When a logic is executed, data
access information and Query are used in order to retrieve and save data.
Especially, execution needs Assembly information and access information that
includes a logic executing the corresponding Model. So a Model includes these
information. That is, executing MOZART Model requires Model file and its
execution file.

There are two methods to execute this kind of Model on MOZART Framework.
The first is to execute Model through MOZART Studio. This method is normally
used when a developer executes Model for testing during development or
performs various experiments with the same Model by changing input
information. The second method is executed through MOZART Server. This is
used to apply Model execution's result to operating system according to user
scenario. The following figure illustrates Model's composition and operating
structure.

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821

Mozart Model

EXEFE't_i'E}T_EJ!__ Assembly Info.
Infe. _

‘ Mozart Server ‘
[(_Quer}f Info. ‘

C-or;nection [r_Tfo_. ‘

Quer} ery Info. ‘

[~
, — |
| Trigger e ————— — —_
! e ‘{ Input Schema ‘ ‘ Arguments ‘ ‘ utput Schema }‘ ------ 1
v — - — - - H
Model Task - ESchema
& Query [out Dat ! -O tout Dat | Schema
i Info. npu. ata iArgument u pQ ata & Query
! (File) - Info. {File)] o,
Data i Creatio vyl — N
- reation 'T\ Creation
Download Execution(0) i
v
Input Persist User logic Output Persist <=
Execution(1) module madule maodule ‘____E}_E_C_UEI_OHI'BJ
| EData Model (In Memory) |
Execution (2) ! Execution DIl |

Model Task is a default Job Type that is provided by MOZART. This has a role to

execute a target Model by entering Extended Arguments' value for configuring
how to execute tasks (execution(0) to (3)) that are executed by Model Task.
MOZART Studio can run Model similarly to a method by Model Task, but
basically most Model is executed with already created Input information so that a
task to download Input data for executing a logic is executed by a separate menu
if necessary. As a result, MOZART Studio executes execution(1) through (3) as a

batch.

How to Manage Job Type

Job Type is a type of Job that can be executed by Job Scheduler. Job Type can
be categorized into two types. There is general type, which are sending e-mails
or running programs. The other is MOZART exclusive job types, which are

Simple Task, Model Task, Collaboration Task. These types are developed using

MOZART.

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#632fc847defa4c789e4626cfadbf2910
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#632fc847defa4c789e4626cfadbf2910

The task of Model Task and Collaboration Task depends on the target Model and
argument settings. Therefore, these two job types needs to be pre-defined. In
addition, general type jobs require being pre-defined as well. Only Simple Task
does not need to be pre-defined because the task is not based on Model.

Job Type can be added, modified or deleted through [Edit Job Type] menu in
Job inquiry page.

Inquire Job Type
1. Select a target server to inquire.
2. Click [Manage Job Types] menu in Jobs node.

3. Registered job types and pre-defined job types from the system can be
inquired through Job Type Manager dialog.

r N

o5l Job Type Manager o | El e
Mame Description Category
Ssendmail sends an e-mail with the configured content to the c... System
Smodel Mozart model based task System
Sexec executing native executables in a separate process. System
Scola Mozart linked model base collaboration task System
l Add] [Edit] ’ Delete l

MOZART Management Console(ENG)

Note
Job Types with $ indicator are job types defined by the system.
These job types cannot be edited by user.

L[4

4. If itis not System Job Type, double-click the name or press [Edit] button on
the bottom of window in order to inquire or modify the information of the job

type.

Registering Job Type
1. In order to register a new Job Type, select a target server in Sever Explorer.

2. Right click on the jobs node of the target server and then click [Manage Job
Types] menu.

3. Click [Add] button on the bottom.
4. A dialog to define the job type will be opened.

5. Fill in the information through Definition tab.

Target Definition l = &]
Definition Arguments
Category
Title
Guid 727C1D44-2559-430E-B30B-49E28179AB3E
Assemblhy
Type
Configuration File
Private Path
Description
Loc
File Targ

o Category : Define Job Type's category. User can input arbitrarily.

MOZART Management Console(ENG)

» Title : Define Job Type name. This is used as an information defining Job
Type in Ul.

e Guid : Input GUID that can define Job Type solely. If a button at the right
of Text Box is pressed, new GUID is automatically generated.

o Assembly : This designates Assembly/Type that implements an
executable ITask in MOZART Framework.

o Press [...] button on the right side of Type Text Box to activate Select
a Type Dialog.

o Click [Load an Assembly] to select the type for the new build DLL
files.

o An item that implements ITask in the selected Assembly is displayed
in tree.

o Select a Job Type to be registered and click [OK] button.

o If Assembly, Type Text Box of Definition Tab are filled with the
selected Type information, selection is properly processed.

o Type : This is selected together when assembly is selected.

» Configuration File (Optional) : Config file to configure the log history
type of Job type. The config file should be copied to Working Folder in
the server first to be registered. When this is done press [...], to select
the config file stored in the server.

« Private Path (Optional) : Private Path means a folder where the
corresponding Job Type's Assembly file and its related file are saved. If
path is not designated, Working folder is used. Working folder is
designated when MOZART Server is installed and this is the only folder
that can be accessed by MMC.

o Description (Optional) : Description of the job type can be included in
this section.

6. If all required information is added to Definition tab, move to Arguments tab
to define the arguments for the selected task.

MOZART Management Console(ENG)

Definition Arguments

Category MName Caption Type Intial Value Value Range Description
#*

Record 0 of 0 +

Target Definition l = &]

Cancel

7. The entered value of the corresponding Argument is used to configure how
Job Type is working when Job and Trigger is registered.

Deleting Job Type

1. Select a target server in Server Explorer in order to register a new Job Type.

2. Right click on the jobs node of the target server and then click [Manage Job
Types] menu.

3. Select a Job Type to be deleted from the list.

4. Click [Delete] button to delete the job type. Please note that job type
provided by the system cannot be deleted.

Job

MOZART Management Console(ENG)

11

Job is an execution object task configured with Job Type parameters. Jobs can
only be executed through Triggers. The Job Type can be set to multiple Jobs that
operate differently depending on the Arguments setting. Thus, Job Type and Job
are in 1: N relationship.

The following are used to define Job.

Basic Information

Job Name : Name of Job. Jobs are categorized by job names.

Description : Job description.

Job Type : Job Type to be executed by the Job. You can select from a
predefined Job Type (see Job Type) or user-defined Job. Job Type's Argument is
changed according to the selected Job Type. For the Model Task and
Collaboration Task (see_Model Overview), you can select additional attributes. In
order to execute a model-based task, a model should be specified by default with
the following additional properties according to the execution method and
collaboration method of the model.

+ Model file : Path of Model file executed by Model Task. List of Model files will
be displayed when Job is mapped to Project.

+ Model dll file : This designates the developed dll file to execute Job.

* Log dir : This designates a folder that saves the corresponding Job's
execution log. Log folder of Working folder is configured as base folder.

+ Additional run count (Optional): This configures the number of repeatable
executions of a Job. If it is set as 0, no extra execution is triggered. If it is set
as 1, the Job is executed twice. (refer to_How to configure More Run)

+ Collaboration Count (Optional): The number of target jobs when the
collaboration with other jobs is required when the job is executed. For
Collaboration Task, multiple Jobs communicate and collaborate during
execution. This attribute means the number of Jobs to collaborate with. You

MOZART Management Console(ENG)

12

https://www.notion.so/37c36f8a6c53414cb254dd8ea2cd022e
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b719c0da2bec4f4abda7a94e2d07ce09

can set the number of jobs to collaborate by this value. (see How to
configure collaboration task)

Disallow Concurrent Execution : Option whether to allow simultaneous Job
execution. If this option is enabled(checked), Same Jobs cannot be executed
although Jobs are planned to start simultaneously in several Triggers.

Arguments

Each Job Type's Arguments

Configured Job Type's Argument. Sending e-mail has Argument like Sender,
Receiver, Subject, and Main body, etc. and user-defined Job Type has
Arguments that were made for configuration when Task was developed. Pre-
defined Argument(refer to Extended Arguments) that is used in Model Task or
Collaboration Task is also considered as Job Type arguments.

Model Argument

Model Argument is an Argument defined in a Model that is configured as an
execution target Model by Model Task, Collaboration Task. Each Argument value
configured in a Job is used as default value for parameter when Trigger is
created. However, if Parameter's value is redefined in Trigger, the redefined value
is reflected when the task is executed.

Job Management

Job is a data defining how Job Type works according to which job types to be
triggered and what arguments to be used. Registered Jobs can be searched
through Job View for each Server in Server Explorer and add/delete/modify
options for jobs can be used from the top side menu. Arguments set in job is
used as the default parameter value configuring the Trigger of the job. In other

MOZART Management Console(ENG)

13

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821

words, when the value in Trigger is not changed, the job will be executed using
the parameters set in job.

o How to Register/Modify Job : This explains how to register a new job or to
modify information of the existing registered Job.

o How to Delete Job : This explains how to delete a registered job.

Register Job

1. Select a target server to inquire through Server Explorer.

2. Double-click Jobs node of the target server to activate the window to inquire
jobs.

Add | Edit | Remowve | Refresh

Drag a column header here to group by that column

JobType Mame
7

ConcurrentExecution | Description

b i$model . SimpleMfg Y
Smodel testmodel v
(]

3. Click [Add] menu on the top menu bar.

4. Enter information on Basic and Parameters tab in "New Job" dialog.

5. First, enter the information in Basic tab.

MOZART Management Console(ENG)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#3032f13a96c744669957fa289ea08ff7

-

ot New Job

Basic Parameters

You must soecifv what action this task will perform.

Job name: Testlob
Description: This is test job
Job Type: [-

[] Disallow Concurrent Execution

MNo opticns for setting.

job from other jobs.

Description : Job description.

+ Job Name : Name of Job. This name is used as an identifier to discern a

Job Type : A combo box to select the job type. There are job types
based on Model Task which are $model and $cola. The parameters

needs to be changed according to model type and execution option. For

these reasons these job types have additional Job setting inputs to

decide the changes.

MOZART Management Console(ENG)

15

{1 Mew Job E=R(ESE
Baszic | Parameters

You must specify what action this task will perfarm,

Job name: Testlob

Description: This is test job

Job Type: [$model b

[7] Dizallow Concurrent Execution

Job Setting
Project : |Server Test -
Madel file : (Model,vmadel -]
Madel dll file : [ServerTest,dll -]
Configuration file : [vl
Log dir Server Test E]

Additional run count @ 0

ok [come |

» Project : Specify the Project that contains the Model file to be executed
by the Model Task and dll file information. When you click the drop-down
list, a list of selectable projects appears.

* Model file : Specify the model file to be executed by the Model Task in
the Project. If there are several model files in one project, only one model
file in the list should be selected.

Job Setting

Froject : [Test v]
Madel file : [-]
Model dl file : Lapae . del

+ Model dll file : Specify the dll file to run the model. You should upload
the file to the server in advance.

o Configuration file : The configuration file that Model refers to. User can
assign the log Key and folder of the Model execution log files through the
configuration file.

MOZART Management Console(ENG)

e Log dir : Specify the folder where the job execution log is to be saved.
By default, this is selected in the Logs folder of the project. You can
select a folder by using [...] button on the right side when changing based
on the [Working Directory | Logs] folder.

e 1

Browse For Folder == ECH =

=) WorkingDirectory o

+ Backup

+ Changesets

+ lohs

5oL Logs

Backuplog
Calla_Test
Fab_Planning
Failure_Test

m

hkma.hkrmazaaaa
HkME,_Planning
Hyniz_Planning
Link

by Project
hyProject

Server Test

[F [e [[[e [e] e [e [e [e [

Iypstern

-

£ kdodels -

Folder: WaorkingDirector® LogshTest

ey Folder (8]] | Cancel

¢ Additional run count : Set a value when you want to run the same
model more than once. The default value is 0. If a value is set,
Arguments are created to select the setting file to be used for each run.

» Collaboration Count : It is displayed when a Job Type of $cola type is
selected. In order to select the Job Type to be the Collaboration target
when running the Main Model, Arguments are created to set Job Types
for each run.

+ Disallow Concurrent Execution : Enabling this option dose not allow
MOZART Server to execute identical Jobs simultaneously.

6. Once the Job Type is selected from Basic tab, the list of arguments that could
be configured for the corresponding job type can be seen through

MOZART Management Console(ENG) 17

Parameters tab. The value of the arguments could be added through this tab.

Note

Unlike job types such as sending e-mail, running program or user
specified job types, Arguments of the Model included from Basic
tab can be seen if job type is either Model Task or Collaboration
Task. Parameters that is displayed at the top part of the following
figure are Input Arguments that are separately created in Model
and extendedProperties at the bottom are Arguments that are
automatically added in order to provide options about Model's
execution and post-processing. For more information of the
corresponding Argument, refer to Extented Arguments.

<

Modifying Job

1.

2
3
4,
5

Select a target server to inquire from Server Explorer.

. Double-click Jobs node of the target server to activate Job inquiry window.

. Select a job to modify from the list.

Click [Edit] menu from the top menu bar.

. Modify each item in the same way that is used to edit in "Registering a Job"

+ Please keep in mind that the changes made in the parameters of the job
after trigger is created will not be applied to the trigger configuration
automatically.

Deleting Job

1.
2.

3.

Select a target server to inquire from Server Explorer
Double-click Jobs node of the target server to activate Job inquiry window.

Select a job to be deleted from the list.

MOZART Management Console(ENG)

18

4. Click [Remove] menu from the top menu bar.

Note

In order to delete a Job, the trigger of the job should be deleted
first. If you try to delete a job while the trigger exists, a warning
message saying the job cannot be deleted because trigger exists
will be displayed.

<

How to configure Config file

Config file can be used to assign the location where the Model execution logs to
be stored. The following explains how to configure Config file.

1. First, create a Config file for the Model. Add the configuration through normal
text file(notepad) and save the file using ".config" file extension.

2. The following is the example. The lines should be included as xml code and a
key has to be added for <appSettings> session.

Usable Keyword

» #log-dir : Key designating a folder where Job execution log is saved.
+ How to configure : Create a folder to save the logs as absolute path or
a relative path under Working Directory/Logs folder in the server.

Example :

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<appSettings>
<add key="#log-dir" value="AModelLog"/>
</appSettings>
</configuration>

If Keyword is written like the above example, log file is created in Working
Directory/Logs/AModelLog folder.

MOZART Management Console(ENG)

19

3. Upload the configured file into a specific folder in Server. Normally it is saved
in the folder where Model file is saved.

4. When Job is configured, Config file also should be configured.

lob Setting
hModel file: DM ozartServervamshmozart bModel s\ SimplebAf |
Radel dll file: DM ozartServervemsimozatiJobs\SimpleMfg.d |

Configuration file: DM ozartSercervamshmozart bodel s\ SimplebAf |

Additional run count: 1

5. If the configuration is done like the figure above, Task and Persist logs for the
job will be created under the assigned folder. The log key of TSK Log file is
the input value of "model-name"” Argument and if log key is not configured the
default key will be "TSK".

How to Configure more run

If a Model needs to be executed several times through a single Job execution,
More Run configuration is used. For example, when a Model executes after
downloading data on a particular time and Model has to execute again with the
results from the previous Model, More Run can be used to perform this task.

This configuration can be done when Job is configured. The following shows how
to configure more run.

1. Set job type from to either $model or $cola from Basic tab. (More Run can be
used from these two job types).

2. Configure Additional run count that is displayed on Job Setting when Job
Type is selected. If 1 is configured, Model is executed one more time. So
total number of executions are 2.

MOZART Management Console(ENG)

20

Job Setting
Model file: Models\2015.03.24_mhmonitor\Model.vmodel | |
Model dil file J0bs\2015.03.24_hmmonitor\ HMKAInputMonito | .. |

Configuration file: E
Leg dir: Monitor E

Additional run count: 1

3. In order to configure argument that is used during additional run, move to
Parameters tab. Extended argument can be seen at the last part of
extendedProperties. This argument is used to set the parameter
configuration for the additional run. Like the following figure, configure #more-
runs = 1 and #more-config-1 will be created.

u-! New Job = EE =
Pararmeters

#rnodel-file O ndozart Server wiodels WTestModelWrnodel, vrnodel
#rnodel-dll

#rmodel-config

#experiment Expetirnent 1
#db-To-file false
#db-includes

#dh-excludes

#zipn false

#rip. FileMarme Termplate

#zip FileMarnePostfix

#rip.FileMarme

#zip UpdateToRecent falze
#more-runs 1

Frur-inces

#rmore-config-1 |

M4 4 Record 25 of 25 X

0]] l Cancel

4. When [...] of #more-config-1 in the above figure is clicked, a window to write
the values for the arguments from Input Arguments included in the Model. In
here you may include the input argument values to use during more-run and
modify the arguments of Extended argument required to be changed during

MOZART Management Console(ENG)

21

additional Model execution. For instance, if you do not want to write Output
Data to DB, you can deactivate #save-database option.

Trigger

Trigger is a set of information that defines the conditions for executing a target
job and how to execute it. Trigger can be created by defining a target job and
conditions for executing the job. This Job should be registered by MMC and Job
condition can be defined in two ways, time-based and event-based methods.

The followings are components that defines Trigger.

Basic Information of Trigger and Job
Execution Condition (Schedule Tab)

Trigger Name : Name of Trigger

Job Execution Condition(Settings) : Basically this condition can be configured
to execute Job repeatedly in a specific cycle from a specific time. (a criterion).
Also by connecting other Trigger's execution, user can assign a specific Trigger
to be executed at the start or the end of the connected Trigger execution or to be
fired when the preceding trigger returns True.

Additional Execution Condition(Advanced Settings) : Additional Trigger's
execution condition such Trigger priority, run-time limitaion, etc. can be
configured.

Target Job

Target Job : Target Job for execution can be registered by MMC only.

MOZART Management Console(ENG)

22

Job Parameter : This is used to configure value of Parameter that decides how
to execute target job. Although Job has already been configured with a default
value, this can be used when user wants to execute Trigger with the changed
value.

Failure Action

Failure Job : This is Job to be executed when Target job is failed to be executed.
As same as other jobs, only the jobs registered by MMC can be selected.

Job Parameter : This is used to configure value of Parameter that decides how
to execute Failure Job. Although Job is already configured with a default value,
user can change this value for each Trigger.

Refer to_ How to manage Trigger to find more details on how to register/delete
Trigger.

Trigger Management

Trigger is Job Scheduler's managing component that is used to define execution
target (Job) and execution condition. Multiple triggers can be registered
depending on the purpose of the job. For example, if one same job has to be
executed at 7:00 on every Monday and at 21:00 on every Friday, this job requires
two triggers to perform these events. There are two conditions for the trigger. A
condition dependent on time is to trigger on a suggested period or cycle and a
condition dependent on event is to trigger during a specified event.

o How to register/modify a Trigger_: This explains about how to register a
new Trigger and how to modify the contents of the existing Trigger.

e How to Delete a Trigger : This explains about how to delete a registered
Trigger.

MOZART Management Console(ENG)

23

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#bf295be6109b47feacc322cde26e27ae
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#1d0c4a85a5f640daa6252c771e9971b4

e How to Copy a Trigger : This explains on how to copy a registered Trigger.

Triggers Ul

This section is the description of Triggers Ul in MOZART Management Console.
In the Triggers tab, you can perform tasks such as register, edit, delete, and copy
triggers. In addition, you can check the history of registered triggers, execution
log, and so on. The below screenshot is the Ul that appears when you activate
the Triggers node.

Top Menu Bar and Trigger List

This Ul is designed to register / edit / delete / search history of Trigger.

MMC2_TEST/Triggers

Add | Edit | Remove

x

Copy | Refresh | Wiew History

Drag a column header here to group by that column

Name

]

b Colaboration
Failure
Fab
Dependent.
Fabi3
Test
server test
exac
FabCopyTest
Test2

*

e Add

o Edit

Cateqgory Jobrame

Colla_Test.Call... -
Falure_Test.F.. -
Fab_Planning.... -
Hynizx_Plannin... -
Fab_Planning.... -
Fab_Planning.... -
Server TestS.. -

e

Fab_Planning.... -
Fab_Planning.... -

Description Enabled
[l

TSI RN SRS

TriggerType NextTime

OneTime
COneTime
OneTime
Dependent -
COneTime
OneTime
OneTime
COneTime
OneTime
oneTime

: This menu is used to register a Trigger.

State

Complete
Complete
Mormal

Mormal

Complete
Complete
Complete
Complete
Complete
Complete

StartTime

2017-03-29 09:22:45
2017-03-27 18:43:02
2017-04-11 1536031
2017-03-23 17:07:33
2017-03-29 09:56:33
2017-03-29 09:50:22
2017-03-27 18:33:35
2017-03-27 18:45:48
2017-03-28 14:4%:01
2017-03-29 09:50:22

EndTime: -

: This menu is used to edit a Trigger registered in the Trigger list.

« Remove : This menu is used to delete a Trigger registered in the Trigger list.

o Copy : This menu is used to copy a Trigger registered in Trigger list and add
it to the list.

¢ Refresh : Button to refresh information such as Next Time / State / StartTime
/ EndTime and Execution History of Trigger.

+ View History : This menu is used to view the history of triggers registered in
the Trigger list. With View History, you can see the history that users have
performed tasks.

MOZART Management Console(ENG)

24

Log Files Windows

This section is for looking up Trigger log files in \WorkingDirectory\Logs\[Project
Name]. When log files are included in the search range of Search Option of
Execution History, the list of files is displayed. In the Log Files section of Triggers,
the 10 most recently opened files are displayed. To view the entire list, you can
activate the Logs tab by clicking [Open Folder].

Log Files O ox
Open Folder

MName Date Size Attributes

|| task-Fab&-20170519-113345.log 2017-05-19 11:36:05 4 kb -3

|| task-Fabg-20170519-112520.l0g 2017-05-19 11:27:40 4 kb -3

|| task-Fab6-20170504-134719%.log 2017-05-04 13:55:37 4 kb -a—-

|| task-Fab6-20170504-131719.log 2017-05-04 13:25:50 4 kb -a—-

|| task-Fab6-20170504-124719.log 2017-05-04 12:55:46 4 kb -3—

|| task-Fab&-20170504-121719.log 2017-05-04 12:26:14 4 kb -3

|| task-Fab6-20170504-114719.log 2017-05-04 11:55:37 4 kb -3

[task-Fab6-20170504-093633.0g 20170504 09:55:42 4kb a2 |
|| task-Fab6-20170502-190633.log 2017-05-03 02:41:13 13 kb -a—

|| task-Fab6-20170502-183633.log 2017-05-02 22:37:03 7 kb -3—

Execution History Window

The Execution History window displays the monitoring information of the selected
trigger according to the search condition. This information can also be checked
on the Monitoring node. You can check it by the following steps.

1. Enter the number of days in Search option. The search condition displays the
last N days of information from the current time. (e.g. the last 10 days from
now -> enter '10' in Search Option)

2. Click [Query] button

MOZART Management Console(ENG)

25

Execution History

Search Option: 30 Days

Cuery

Drag a column header here to group by that column

Triggertame Scheduled
N
+ Fab 201
Fab 2017-03-29 09:56:33
Fab 2017-03-28 15:10:33
Fab 2017-03-27 19:55:20
Fab 2017-03-27 19:25:26
Fab 2017-03-27 19:1%:20
Fab 2017-03-27 15:43:25
Fab 2017-03-27 14:01:11
Fab 2017-03-27 13:48:01
Fab 2017-03-27 131522
EN 1o+ e 1 A
 Note
&

Start Encl

2017-04-11 15:36:31 2017-04-11 15:39:26

2017-03-29 09:56:33
2017-03-28 15:10:33 | 2017-03-28 160351
2017-03-27 19,5520 2017-03-27 195841
2017-03-27 19:25:26 2017-03-27 19:25:37
2017-03-27 1911920 2017-03-27 192241
2017-03-27 154325 2017-03-27 15:46:02
2017-03-27 140111
2017-03-27 13:148:01
2017-03-27 13115022

AMF AT AT 194 TED
4

Message

System. AppDomanUninadedException: ...

Elapse Status Result
00:02:55 @ Complete SUCCESS

Aharted
005318 @ Complete SUCCESS
omD3:21 @ Complete SUCCESS
0moo0:11 & Complete FAIL
00:03:21 @ Complete SUCCESS
0m0z:43 @ Complete SUCCESS

Aharted

Aharted

Aborted

Sbmemwtmd

Triggers' Execution History is displayed by paging, and initially displays
items in 10 units according to window size. The user scrolls down in
increments of 10.

Trigger Execution Log Window

In the Trigger Execution window, you can check the execution time of the Trigger
selected in the Execution History window step by step. For more information,
please check Monitoring.

Trigger Execution Log
Action

Start

’ ;EPRE_DUWNLDAD

| 2022-05-26 05:50:03

PRE_PERSIST_IN
DOWNLOAD
PERSIST_IN
ENGINE_RUN
PERSIST_OUT
ZIP_RESULT

2022-05-26 05:50:03
2022-05-26 05:50:03
2022-05-26 05:50:03
2022-05-26 035:50:04
2022-05-26 05:50:06
2022-05-26 05:50:06

MOZART Management Console(ENG)

End

2022-05-26 05:50:03
2022-05-26 05:50:03
2022-05-26 05:50:03
2022-05-26 05:50:04
2022-05-26 05:50:06
2022-05-26 05:50:06
2022-05-26 05:50:06

Elapse

00:00:00
00:00:00
00:00:00
00:00:01
00:00:02
00:00:00
00:00:00

26

Adding Trigger

1. Select a target Server where Trigger is registered in Server Explorer.

N

Double-click on Triggers node to open trigger page.

Click [Add] from the top menu bar.

Eal S

Enter information for Schedule, Target Job, Failure Action Tab on New
Trigger dialog.

5. Enter information of Schedule Tab.

B28 Edit Trigger - [} b

Schedule Target Job Failure Action

Trigger name: Testtrigger

Category:

Description:

Settings

® One Time St [12/18/2014 [@|[aM10:27:010 3] | Set to now

O simple [Expire: 12/18/2014 AM 10:27:01 3
O Daily

O Weekly

O Monthly

O Dependent

Advanced Settings

[Priority: 0 [Retry Interval: 00:00:00
[] stop task if it runs longer than: 00:00:00 Retry Count: 0z
Enabled
[Trace

Schedule Now QK Cancel

« Trigger name : Name of the trigger.
o Settings : Set trigger condition.
o One Time : Trigger the job once at its starting time.

o Expire Configuration : If Expire check box is checked, Trigger is
executed until the configured Expire time.

o Simple : Number and cycle of repetitions can be configured. Repeat
cycles can be set from second to a day. If repeat count is set the

MOZART Management Console(ENG) 27

event occurs on the condition set on Recur every.

Settings

Cne Time
@ Simple
Dl
Weekly
Monkhly

Dependent

Stark:

iExpires 3/26(2015

Recur everny:

Repeat count:

sjzefz015 [E

10:27:01 AM = Set ko now

102701 AM

0.00:00:00 jntersals
0F {3 -1:infinitels)

00:00:00

When repeat count is set to -1, the trigger is repeated for unlimited times. In
this case, the option ‘for duration of' will be activated. Check on this option
and enter the time then the trigger event will occur from the interval set on
Recur every on the start of each day until the configured duration.

o Daily : Schedule can be defined to repeat on a daily basis. Schedule can
be made likewise as Simple Type.

+ Weekly : Weekly Cycle can be configured. The day(s) to repeat can be

designated.

* Monthly : Trigger can be set to a combination like (Month + Specific day)
or (Specific Month + a day in a specific order of the Month).

o Dependent : This is an event based condition. A target trigger needs to

be selected as a reference and conditions to start the trigger event needs

to be set. (Start/End of target trigger) A trigger set as Dependent will be

dependent on the target trigger.

Settings

one Time
Simple
Doaily
eakly
IMonthly

@ Dependent

MOZART Management Console(ENG)

Skart: sizefzois [Ev 1mE7olaM = Set ko now
Expire: 5262015 10:27:01 AM
Referred Trigger: - |
Execution type: AfrEnd v|

Execution delay:

00:00:03

28

+ Referred Trigger : The target trigger to execute the corresponding
trigger. Multiple triggers can be selected.

o Execution type : This defines when to trigger according to the condition
of Referred Trigger.

o

AtEnNnd : Triggers when the target trigger of Referred Trigger is
completed.

AtStart : Triggers when the target trigger of Referred Trigger starts.

ReturnlfTrue : Triggers when the target trigger of Referred Trigger
returns true. For example, a job to return true can be used when a
job needs to be executed when system data changes or when a
trigger of Referred Trigger is to inquire a certain data and the
condition is met. In this case, the Model Task Return value
(true/false) needs to be set from the job triggered by Referred
Trigger.

+ Example of How to use ReturnifTrue Type

o Execution delay : Set the delay time when the condition in Execution
type is met.

¢ Advanced Settings

o

o

Priority : When multiple triggers start simultaneously, this defines
priority of execution order.

Stop task if it runs longer than : This option is to set the maximum
run time of the trigger. If the trigger is performed longer than the
configured max time, the trigger will be terminated by force.

Enable : Activate corresponding trigger
Retry Interval : Decides retry intervals when trigger is failed.

Retry Count : Decides retry counts when trigger is failed.

6. Enter information of Target Job Tab.

MOZART Management Console(ENG)

29

F b |

a5l New Trigger =RNCN X

Schedule Target Job Failure Action

Target job: testmodel -

You must specify what arguments this task will use,

4 test
plan-name test
model-name ‘test model

4 7 - extendedProperties
#daction-excludes
#daction-includes
#daction-excludes/in

l #daction-includes/in

#start-time.AdjustMinutes 0
#overwrite-result false
#use-database false
#save-database false
#model-file D:¥MozartServerfModels TestModetftmodel.vmodel
#modeldll D:WMozartServer®lobsWSite.FP_Planning2.dll
#model-config
Faxperiment Experiment 1
I M4 4 4 Record 2 of 24 [v X

o Target job : The target job to trigger. Only the registered jobs can be
selected.

e Argument : Input Parameter is configured according to needs when
Target Job is executed. Value of parameter that is configured in a Job is
used as a default. When a Job is executed, Argument value configured in
Trigger is used.

7. Input Failure Action Tab Information . It has the same input format as Target
Job's.

» Failure Action : A job to execute when target job fails to execute by
adding new function or a job as a backup for complement.

e Argument : Configures the input parameters of the job in Failure Action.
As same as in Target job tab, the default value is the parameters set in
job.

Modifying Trigger

MOZART Management Console(ENG)

1. Select a target server to modify trigger in Server Explorer.
Double-click on Triggers node to open trigger page.
Select the trigger from the list to modify.

Click [Edit] from the top menu bar.

a ~ w D

Change the information as done through "Registering Trigger" section.

How to Copy Trigger

Trigger Copy

If you want to compare the results of two triggers by changing the part of
arguments or if you need to change the name of an already registered Trigger,
you can copy Triggers as shown below.

1. Select a target server to be checked in Server Explorer.
2. Double-click Triggers node to open trigger page.
Select a trigger from the list to be copied.

Click [Copy] menu from the top menu bar.

a M w

Enter the name of the trigger to be copied.

Note

Please note that an error will occur if the entered name of the copied
trigger already exist in the list. Be advised not to use any of the name
already in the list.

=

Deleting Trigger

1. Select a target server to be checked in Server Explorer.

MOZART Management Console(ENG)

31

2. Double-click Triggers node to open trigger page.
3. Select a trigger to be deleted from list.

4. Click [Remove] menu from the top menu bar

Model and Data to Temp Folder to Run Trigger_

Run Trigger From Another Domain/Execution DLL Version

Dependent Trigger Example

Extended Arguments

The actual execution of Task and Model that are created through MOZART
Project is done through ModelTask of MOZART execution engine. The preset
arguments to adjust the execution options of Model Task are System Arguments.
Developers can assign these System Arguments to Input Arguments of the
Model to use the preset execution options. The followings are the descriptions of
System Arguments.

Basic Arguments

Argument . Data
Argument Description
Name Type

. Name of experiment that Model execution's output is .
#experiment _ _ string
created. Default is "Experiment 1"

Model's version name (Default format : {model-name}-

string
{yyyyMMdd-HHmMmss})

version-no

Default name for versionNo when there is no versionNo ,
model-name string
entered

MOZART Management Console(ENG) 32

https://www.notion.so/experiment-9ddff6bd0fac493daac08d0c0e653ed2
https://www.notion.so/version-no-c8b3cfb97cc841b2a3d6888e75daaadb
https://www.notion.so/model-name-56ab07738230439aab1dc2ca8a792bfc

Argument
Name

start-time
end-time
period
period-unit

#start-
time.AdjustMinutes

#model-file
#model-dll

#model-config

Argument Description

Task starting time (Simulation clock)
Task completion time (Simulation clock)
Plan&Schedule period

period configuration unit (default : day)
Input variable to adjust starty time tp job execution time

Full path of the vModel file
Full path of the model dll file

Full path of the model configuration file

Data Download/Upload Arguments

Argument Name

#overwrite result

#use-database

#save-database

#db-to-file

#file-to-db

#db-includes

Argument Description Data Type

Option whether to overwrite result or
not.

boolean

Option whether to use database or not.
(Input data download)

boolean

Option whether to save output data to
DB or not.

boolean

Option whether to synchronize
database without running simulation.
(default value = false) : Input data
download

boolean

Option whether to synchronize
database without running simulation.
(default value = false) : Output data
save to DB

boolean

File name containing the list of tables to
synchronize input data to the database.
The tables not listed will not be
synchronized.

string

MOZART Management Console(ENG)

Data
Type
DateTime
DateTime

float

string
int
string

string

string

33

https://www.notion.so/start-time-9b6fac3500b94b83a1f1cc8675c1bb1d
https://www.notion.so/end-time-1779a01b2cc54447bfc7578b7f0eec4c
https://www.notion.so/period-385e283c4db64717aff99bdc4036b4c8
https://www.notion.so/period-unit-1b3ce468fcf64208a484fac6789c2135
https://www.notion.so/start-time-AdjustMinutes-a16190fbf3d74497a9beedc61cd81d5c
https://www.notion.so/model-file-d1e4436c0b974f5db536a23ced7f943a
https://www.notion.so/model-dll-dc1773cb809242309daa957cd4902e48
https://www.notion.so/model-config-a21e355edbfc4eb6989b9db6d460ec74
https://www.notion.so/overwrite_result-8a13e3baff7e448e9425e019cbc353ee
https://www.notion.so/use-database-e40bdde748424d60aa976d9d735ddff1
https://www.notion.so/save-database-922454136153485281b40591905123fc
https://www.notion.so/db-to-file-32e468b1ac56419b9b1c1e6f94f06904
https://www.notion.so/file-to-db-3c89b3a1d52a41488fc568dc9bc21c66
https://www.notion.so/db-includes-482cbbbd4cb64598b777c5d0c2584a37

Argument Name

#db-excludes

#daction_excludes

#daction_includes

#daction_excludes/in

#daction_includes/in

Argument Description

File name containing the list of tables
not to synchronize input data. All tables
except for the target tables will
synchronize and if there is same table
entered in #daction_includes, the
following table will not be excluded.

A checked-box drop-down list of Output
Dataltem to exclude DataAction
execution during the Save DB phase.
The selected Dataltems will not perform
DataAction regardless of their activation
condition. This option cannot be used
together with #daction includes.

A checked-box drop-down list of
OutputDataltem to execute the
DataAction during the Save DB phase.
Only the selected Dataltems will
perform DataAction and unselected
Dataltems will not perform DataAction
regardless of their activation condition.
This option cannot be used together

with #daction_excludes .

A checked-box drop-down list of Input
Dataltem to exclude DataAction
execution during the Persist-In phase.
The selected Dataltems will not perform
DataAction regardless of their activation
condition. This option cannot be used
together with #daction includes/in .

A checked-box drop-down list of Input
Dataltem to execute the DataAction
during the Persist-In phase. Only the
selected Dataltems will perform
DataAction and unselected Dataltems
will not perform DataAction regardless
of their activation condition. This option
cannot be used together with

#daction_excludes/in .

MOZART Management Console(ENG)

Data Type

string

string

string

string

string

34

https://www.notion.so/db-excludes-6ef02a8d3f144b6fb00fe1a970fa7f3d
https://www.notion.so/daction_excludes-152d68988175464d8e2b311c6464d6c1
https://www.notion.so/daction_includes-68f37016d732470390929612c6ba3728
https://www.notion.so/daction_excludes-in-10c86c178f3144fe9fcc68daa2d5ae32
https://www.notion.so/daction_includes-in-e4965e6fb1e242598fbc1085d4b965a8

Argument Name

#dataSource-set-
default

#datasource-set-
default-exception

Argument Description

Sets the connection string to use as
default from the model. The key is the
name of the data source and the value
is the name of the connection string. In
case multiple connection strings need
to be set the delimiter is semicolon (}).

Indicates whether to raise an exception
in case the connection string specified
in #datasource-set-default could not be
found.

Logging/Performance Arguments

Data Type

Dictionary<string,string>

boolean

Argument
g Argument Description Data
Name Type
. The relative path (Working Directory\Logs) to save the trigger .
#log-dir . p ' (g y\Logs) ag string
execution log files.
#log-level Sets the log level. (Verbose~Fatal) string
Indicates whether to aggregate the performance of the model
#performance- .)) . .
orofiling execution (default = true). Trigger Execution Log information boolean

will not appear from Triggers and Monitoring if fatse .

Run Arguments

Argument Argument Description Data

Name Type

#more- . .
Repeat count of Model execution. int

runs

#more- This variable is used to configure the argument's value for each

config- repeated execution. If not designated, the argument value of the string

[runindex] previous occasion is used. This is automatically created by MMC

#run- " . o . :

ind The current repetition's index. This is automatically created by MMC. int

index

MOZART Management Console(ENG)

35

https://www.notion.so/dataSource-set-default-35bf4b2033ce4adcaa1e95e7e970de36
https://www.notion.so/datasource-set-default-exception-3e08e889f07b45f887543cc673201ce3
https://www.notion.so/log-dir-d6fdeb882bb54766b26bbd8e3f711c13
https://www.notion.so/log-level-5dfdeb28c28d4fea98d6652611c031b5
https://www.notion.so/performance-profiling-4df5eaccdb144a02b2ffc2b5944bb6ac
https://www.notion.so/more-runs-2f99323433c648348186cf7a7d0b2ce4
https://www.notion.so/more-config-runindex-c423d02a89d6425e9724958aa753ad8c
https://www.notion.so/run-index-e8a52edab1f24f1faf36767d95fad690

Temp Folder Run Arguments

Argument Argument Description

Name

#use-run- Indicates whether to create a temporary folder to execute the

dir trigger. For more details see_here.

4rmax Sets the maximum number of temporary folders to maintain. The

run-dir oldest folder will be deleted when the number of folders created
exceeds the number set in this argument.

#use- Indicates whether to use the most recently created temporary folder

parent- of the reference trigger when the dependent trigger executes. This

path argument is valid when #fite-to-db IS Set as true.

Zip Model Arguments

These Arguments are used to configure rules for making a compressed file(like
ZIP file) from an executed Model.

Zip Model Arguments

Argument Name

#create-csv-files

MOZART Management Console(ENG)

Argument Description

Indicates whether to additionally create CSV files of
Input and Output data during zip compression. When
the task is performed with this option enabled, both
vdat and csv format files will be created inside each
Data and Result folder. See here for an example.

Option whether Model is compressed after simulation
is completed.

Data
Type

boolean

int

boolean

Data
Type

boolean

boolean

36

https://www.notion.so/use-run-dir-c914c1efaaa2406bb187d3adc23da3ee
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4b74fd9214a54445aaeae22853949898
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4b74fd9214a54445aaeae22853949898
https://www.notion.so/max-run-dir-fbe33692f40649438a0c1ccb01c489f8
https://www.notion.so/use-parent-path-77059f80aa434a779d42f8f7a1b4e887
https://www.notion.so/create-csv-files-045a7feee0d24642b95f068632cb7f71
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ed2912cfccd04ab4b23f1f5e553365d6
https://www.notion.so/zip-b9837493604f4fe5b4b69041935271a9

Argument Name Argument Description Data
Type
Indicates whether to compress the model execution
result in a 7-zip format or not. This option can be used
only when #zip=true . 7-Zip compresses to 7z format
#zip.Use7z 30-70% better than to zip format. Due to the high boolean

compression ratio, the compression speed is slower
than the zip method. Using this option may result in
increasing the task runtime.

The path to create compressed file. If not set, the file
. is saved where Model files are located. The folder is .
#zip.Path])] string
created as a relative path to Working Directory or else

Working Directory itself will be used.

#zip.FileNamePostfix Postfix for compressed file name string

Template to save the name for the compressed file.
Default template is
"${Model_name}_${zip_now}${zip_postfix}" The
followings are the allowed keywords to be used. ¢
${Model_name} : Name of Model ¢ ${now} : Time
#zin.EileNameTempate when cqmpression begins (DateTime) « ${zip_now} : string
Time string (format : yyyyMMddHHmMmMsSs) ¢
${zip_postfix} : postfix used for compressed file name
* ${version-no} : Model's execution version name ¢
${start_time}: Plan start time (format:
yyyyMMddHHmMmss) « ${end_time}: Plan end time

(format: yyyyMMddHHmMmMsSs)

Indicates whether to overwrite the current model

execution result to the most recently created zip file or

not. If true, the contents inside the most recently

created zip file will be overwritten with the current
#zip.UpdateToRecent = model result. The name of the zip file does not boolean

change. If #zip.FileNameTemplate begins with

yyyyMM format, new compressed file is created with

the name of the most recently-compressed file that

has the same year and month.

Hosting Arguments

MOZART Management Console(ENG)

https://www.notion.so/zip-Use7z-5666e69a9a6948f9ab82d55f55976e0b
https://www.notion.so/zip-Path-4bc8dff84743433f8f51db85b795f6ce
https://www.notion.so/zip-FileNamePostfix-b6b15f8888524d81bd7dcedf70f39ea9
https://www.notion.so/zip-FileNameTempate-f60438bc3f0d4c1e8dd44d7d08c80542
https://www.notion.so/zip-UpdateToRecent-80ab7d30d9ba4f399716b1d428df3f74

The arguments listed below relates to the setting for hosting job/trigger from

different Mozart server versions.

Hosting Arguments

Argument Argument Description
Name

This argument is to set the relative path of the mozart server located
#host-dir in the WorkingDirectory to execute the trigger from a different version
from the mozart server installed currently. For more details, see_here.

This argument is to set the version of the moart server to execute the
trigger from a different version from the mozart server installed
currently. This argument works as same as #host-dir but instead of

#host- locating the mozart server DLL files to the working directory, this

version argument finds the DLL files of the specified version from the
Execution folder. When #host-dir and #host-version is set at the same
time, the trigger will be hosted from #host-version. For more details,
see here.

Shortcut

Shortcut acts a medium for file exchanges among MMC and server. MMC should

Data
Type

string

string

be able to add/modify/delete a specific Directory and/or File as a management

tool for MOZART Server. However, not all folders can be accessed due to

security and management issues. MOZART's operating/management personnel
can refer to only the path that is subordinate to Working Directory in MOZART

Server through MMC. The following figure shows the concept of Shortcut.

MOZART Management Console(ENG)

38

https://www.notion.so/host-dir-c70c56b3707747f397e0cc4c1d9d260d
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ba956f8cd3d14e18b274152a42237ddb
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ba956f8cd3d14e18b274152a42237ddb
https://www.notion.so/host-version-b077bac1c69242dcb228478a24b21b87
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#3b2aeff9eab84a4490f60c0fedeb7495

Short Cut’s Concept and Operating Method

Mozart Serverl

Log
MMC

{ Model

&"\ Shortcut2 o

Shortcut3 - Mozart Server2

'
A
v
[}
.
[
i

Shortcutl

I

j

» Distribution{Upload) of model & B

Task dI .
+ Inquiry on server file (log) Shortcutd) i
+ Server model management . N e -
- - | “*——-{ Model

I

MOZART Server operator can register Shortcuts mapped to main management
folders of the servers registered to MMC's Server Explorer. The files can be
uploaded and inquired through Shortcuts.

To see how to use Shortcut, refer to How to manage Shortcut.

Managing Shortcut

Shortcut a method for MMC users to access server folder (Shortcut concept).
The Shortcuts are managed through Server Explorer.

Adding a Shortcut

1. In order to add a Shortcut, select a server node as the target to access.

2. Add a Shortcut by clicking [Add Shortcut] of pop-up menu or clicking icon
at the top of Server Explorer.

3. Input each item in New Shorcut dialog.

MOZART Management Console(ENG)

39

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b86d7d108faa40ebbc9d43963e7184e0
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#377c199c1c61413b846c70003cf3a863

g5l Mew Shortcut @

Shortcut Mame: ModelFiles

Shortcut Directory: E]

Description:

¢ Shortcut name : Shortcut ID. This is the name of displayed Shorcut.

o Shortcut Directory : Server folder that Shortcut is mapped on. Select a
Server folder by using [...] button at the right side. WorkingDirectory is
the designated folder when MOZART server is installed. Shourcut can be
created only in Working Directory.

© -

atl Browse For Folder =RREN X

S0 ") WorkingDirectory
-} Jobs
l ngs_
; Models
- | Models2

Folder: e\ MozartServer.

Mew Folder] [Delete Folder] I QK] [Cancel

e Description : Description of Shortcut.

4. The created Shortcut can be accessed by executing [Open] command in
pop-up menu or double-clicking the shortcut. This is similar to Windows
Explorer and the folders subordinate to the correspond Shortcut can be
explored.

MOZART Management Console(ENG)

40

-7 Mozart Management Console EE |

File Window Help

Server Explorer ® x Jobs Triggers ModelFiles x v
= e & &) { D:#MozartServers#hodslsw A= + 4
-5k Server Explorer — =
Bé My Computer (CHUNGG | Name Date Size Attributes
[Models \'SimpleMfg 2015-01-19 11:14:56 —
) | TestModel 2015-01-19 13:42:22 —
(@) LogFiles
{2 ModelFiles
4 1 | 3
Output B X
Output © General -

Modifying a Shortcut

1. Select a target Shortcut that will be modified and execute [Edit Shortcut] in
pop-up menu.

2. Modify input item when the above Shortcut is added. Modify the name and
Directory, etc.

Deleting Shortcut

1. Select a target Shortcut that will be deleted and execute [Delete Shortcut] in
pop-up menu or click Shortcut delete icon [H{£0|&] in Server Explorer. Then,
the Shortcut will be deleted.

Configuring Server default Shortcut

MOZART Management Console(ENG)

41

The shortcut information is designed to be set separately by each user and use
PC . However, if a Shortcut is shared in Server for common use by all MMC User,
this can be configured in Server. Refer to Installing MOZART Server/Configure

Default Shortcut.

MOZART Server Installation

Feature Description

MOZART Product Configurator, a new feature, has been included to support
MOZART product installation and update. MOZART Product Configurator is used
in MOZART Server product and Domain Library for server product only. This
feature will be expanded to support client products in the nearest future.

Feature Background

In general, most server products must guarantee, and in case a version update
occurs, the best is that the operation or the services on the server side does not
get affected or suspended during the update is performing. Also, only the target
components should be updated instead of the entire update.

The previous version of MOZART Server had the problems mentioned above,
and even when a minor update is performed, all of the services related to
MOZART Server had to be suspended and restarted until the update is
completed. As for major updates, the actual DLL files that needed to be updated
were not many, but all the files were replaced with the newer version, which
requires reassessment for stability.

From 2019.115.000.0 version, the structure of MOZART Server product has
changed to overcome the stability problems by 1)separating and reconstructed
the services to give no influence among each other services, and 2) divided

MOZART Management Console(ENG)

42

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ea9830fd6bb546cbb8b4d97c13620b19

file/folder composition in order to update only the required files without
affecting the service operation.

MOZART Product Configurator is the feature to support the update and
installation of the MOZART Server product mentioned above.

Feature Composition

1) MOZART Server Installer

MOZART Server Installer The following figure shows the composition of
MOZART Server installation files when MOZART Product Configurator is used.

MOZART Server Installer

MOZART Server
Installer

Mozart Server
Configurator

=

Install Data ‘

MOZART Management Console(ENG)

43

MOZART Product Configurator controls the task such as installation, update, and
configuration. The installation process did not change from the previous versions
and still uses nsi file to install MOZART Server. However, during this time the
installed components will not be MOZART Server, but the features in Install Data
and MOZART Product Configurator is installed.

The components such as Server and Domain Library are provided as Install
Data and each of them is individual components which could be selected by the
users to be installed. The MOZART Product Configurator is used to select the
Install Data to install and provides a feature called Configurator to apply user
configuration for each of the components after installation, and have control to
start/stop the services.

One of the features in MOZART Product Configurator is that after the initial
installation, there is no need to reinstall the product when there is an update.
Instead, users can select the Install Data of the components to be updated. The
following image shows how the services and Domain Library is updated using
Install Data.

[Mozart Product Configurator = R

Product Management Package Information

License

Installed Packages:

Service= YHO|E E& O|F B Rollback —

Service Monitoring Name Version ReleaseDate Description Inst
Packages 2019.115.1.0 2019-04-13 PNCREREI Rolback | uninstal |
S —— MozartManagermertsearvice 2019.115.0.0 20190513 20150313 Uninsta
MozartServerService 201911500 2019-03-13 2019-03-13
MozartiobScheduler cp 2019.1150.0 2019-03-13 2019-03-13 Uninstal
MozarthanagementService [General 2019.11500 2019-03-13 2019-03-18 [Uninstall_|
Mosar e ver s e General 2019.115.1.0 2019-04-13 2019-03-18 [Uninstau |
Led 2012.1150.0 2019-03-13 2
MP 2012.115.0.0 2019-03-13 2 Domain Librarye 42 37}
SemiBE 201911500 2019-03-13 P/ S
SemiFab 201911500 2019-03-13 2019-03-13
New Package Installation: Instal Cancel

Logs:

The services used for operating MOZART Server can be rollbacked to the
previous version at any time through MOZART Product Configurator once
updated has been proceeded. In the other hand, when there is an update for
Domain Library, the old version will remain for other purposes, and the new

MOZART Management Console(ENG)

44

version will be installed in a separate folder using the version as the name of the
folder. The reason is that the vmode1 and the task DLL in the server can be
executed from other versions than the latest version using #host-dir until the
compatibility of the latest version is guaranteed to operate the server with the
vmode 1 and task dll built from the newer version.

2) Folder Structure after MOZART Server and
Install Data Installation

Install Data is a set of MOZART product components which could be installed
through MOZART Product Configurator. The file extension of the Install Data
is mdz (MOZART server Install Data Zip) and each of the ndz files has each own
specified file composition inside. Since the file composition is specified for each
purpose, the folder structure of MOZART Server is also specified and categorized
by each of the components. The following image illustrates the file/folder
structure of the MOZART Server after installation completed using MOZART
Server Installer(msi) and MOZART Product Configurator.

—_— Program Files
[Service Component].mdz

DLL ‘ Copies the files as is of the package
PDB ‘ structure by creating the folders for
each service component

Mozart

£} CP.mdz
EX FP.mdz
EX General.mdz MozartServiceHost.exe |

[Service Component].config ‘ Server

'{j [Service Component]

version. The files are copied to the
corresponding version folder

2 :.o:Sc:edu\er.mdz ConfigurationView.dll ‘ D Files

cd.mdz

ER ManagementService.mdz Manifest.xml ‘ Execution

EX MP.mdz i

E} serniBE.mdz . E [Version]
[Domain Component].mdz

) SemiEDS mdz oiL ! D Files

£} SemiFab.mdz

£} serverServicemdz PDB ‘ Bin

T ‘ New folder is created for each D Configurator.exe

Manifest.xml D MozartProductActivationTool.exe

% Program Data
Mozart

CustomConfigs

5 MozartServer.Setup.msi MozartServer.exe

lled through installer

[Service Comp].config Service i ion file

PacakgeBackups Old version service component install data
[Component].mdz

MDZ: Mozart server install Data Zip password.dat Configurator password data

The files/folders of the MOZART Server is installed into %progranriles\vms\server
as it did from the previous versions. However, the files for each MOZART Server
service components and domain library files are not copied to one single folder,
instead the folders are separated and categorized by each of the components.
The following shows the name of folders created when each of the components
is installed.

MOZART Management Console(ENG)

[Service Component] Contains the folders related to server services used to
operate MOZART Server. The followings are the name of the folders created
when service components are installed.

e MozartServerService : Consists of the services such as outrileservice
which enables to download the model result zip files from MOZART Studio,
Licenseservice tO activate the license of products such as MOZART Studio,
and Triggeriobservice Which provides the interface allowing the users to
define logic to execute triggers out from MMC.

 MozartManagementService : Consists of the services such as
peployManagementservice , responsible for file deploy scheduling and
configuration management(changeset), oeployagent providing the service to
download/upload files through MMC, and Jobservice which provides the
information of the Job/Trigger to the Jobscheduler service and stores the
argument setting information of the Job/Trigger.

e MozartJobScheduler : The jobscheduler service which executes the task of
Job/Trigger registered in the server.

[Execution] The execution folder contains the folders/files of the domain
library by each version. For instance, if the ceneral pomain Library of
2019.115.000.0 version and semiconrab bomain Library Of 2019.11X. XXX.X
version is installed, then inside of the execution folder will contain two folders
named 2019.115.000.0 and 2019.11X.XXX.X in which one will have files
related to ceneral pomain Library and the other will contain files of semiconrab

Domain Library .

[bin] This folder contains the files to run such as MOZART Product
Configurator, MOZART Product Activation Tool and etc.

[CustomConfigs] This folder is created inside of %programpata%\mozart which
contains the configuration files created from MOZART Product Configurator
when configuration setting for each vozartserverservice , MozartManagementService
and wozartiobscheduler IS made.

[PackageBackups] The folder is created under %progranpata%\mozart where the
older versions of service component Install Data files are backed up and stored
when a newer version of the service components are installed. The files in this
folder is used for rollback in MOZART Product Configurator

MOZART Management Console(ENG)

46

How To Use

This section describes how to use MOZART Product Configurator to install
MOZART Server and Domain Library.

1) How to Install MOZART Product Configurator

There are two ways to install the components of the Install Data. 1)Install
together with MOZART Product Configurator through MOZART Installer,
2)using the MOZART Product Configurator to install the Install Data. The
steps to install as 1) will be explained below in this article.

Download the install files of MOZART Server from the given URL link, unzip the
file, and follow the steps as below.

1. Copy the ndz files from the 1nstail pata folder where wozartserver.setup.msi
file is located.

|E=8 RS

(L JEI=[) » Mozngerver « [42 [Search tozatsener ry

Organize v Includeinlibrary = Sharewith v New folder = 0l @

=
Ir Favorites MNarme Date rmodified Type Size

B Desktop . InstallData 3/18/2018 936 PM File folder
& Downlaads 15! MozartServer Setup 3/18/2019 1220 PM Windows Installer .. 20,005 KB
5 Recent Places
L Result (192.168.139)

A Libraries
(% Documents
rJ'i Music
=] Pictures
B videos
8 Computer
&L Local Disk (C)

DWD Drive (D) X16-5

“I_i Metwark

InstallData Date modified: 3/18/20199:36 PM
File folder

2. After copying the ndz files to be installed along with MOZART Product
Configurator, double-click vozartserver.setup.msi file to run the installation.

3. Click [Next] button from welcome pialog .

MOZART Management Console(ENG) 47

Welcome to the Mozart Server Setup
Wizard

The Setup Wizard will install Mozart Server on your
computer. Click Mext to continue or Cancel o exit the Setup
Wizard.

MOZART

i vy g fo
Al Bt %

Back Mext | Cancel I

4. Check "l accept the terms in the License Agreement” from the end-user
License Agreement dialog and click [Next] button to proceed to the next step.

MOZART Management Console(ENG)

48

ﬁl Mozart Server Setup

End-User License Agreement

Please read the following license agreement carefully

V11 gecept the terms in the License Agreement;

MOZART SOFTWARE END USER LICENSE AGREEMENT

THIS END USER LUCENSE AGREEMENT ("EULA" or "AGREEMENT") IS
AN BINDING AGREEMENT BETWEEN YOU (HEREINAFTER *YOU" or
"USER?), WHO INCLUDES AN INDIVIDUAL, A COMPANY, OR AN
ORGANIZATION WHO HAS OBTAINED A UCENSE FOR USING THIS _

Print] [Back

Next

Cancel

5. Select the path to install MOZART Product Configurator. The default path
is C:\Program Files (64-bit : C:\Program Files (x86))

MOZART Management Console(ENG)

49

ﬁ! Mozart Server Setup E=Elc FI&I

Destination Folder
Click Mext to install ko the default folder or click Change to choose another,

Install Mozart Server to:

|C:\,Pr-:|grann Files (x&6)

6. Click [Install] button to start the installation.

ﬁl Mozart Server Setup E=ElC FI&I

Ready to install Mozart Server %‘

Click Install to beqin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Cancel

MOZART Management Console(ENG)

7. After installation is completed, check "Launch Configurator" in order to launch
MOZART Product Configurator. Click [Finish] button to end the

installation.
'ﬁ! hozart Server Setup El'ﬁ'@ﬁ
L+l UM
AA 'YV Completed the Mozart Server Setup

| A Wizard

- AAAL
'V A A

A J Click. the Finish button to exit the Setup Wizard,
‘L
A4
A
h
v Y
A MOZ
A
_ [¥]Launch Configurator
|
Back. Cancel

8. If the "Launch Configurator” checkbox is checked, a dialog to input password
to start MOZART Product Configurator will appear after installation is
finished. The initial password is mozart.

°" Mozart Product Configurator Login @

Enter the password:
mozart

Show password

| ok || cance

MOZART Management Console(ENG)

e Show Password : Indicates whether to show the text of the input password.

2) How to install Install Data Through MOZART
Product Configurator

MOZART Product Configurator will start once the correct password is entered
after installation. The following steps explain how to install Domain Library Install
Data using MOZART Product Configurator. (The na- files of Domain Library
can be installed along with MOZART Product Configurator when placed at the
same location of Mozart Server Installer nsi file.)

1. A tutorial explaining each of the components will appear on the first
installation of MOZART Product Configurator. Click [X] button until all
tutorial is shown. The first screen that will be displayed after the tutorial is the
service Monitoring Screen. Click rackages to change the screen.

2. The list of installed components will show in the rackages screen. To install
the Domain Library, click [Select Package File] from new package
Installation: . Only one ndz file can be installed at one time.

3. Select the ndz file to install. The selected component will be shown through
the 1nstalled packages screen and will be on standby to be installed.

4. Click [Install] button to install the component. The installation result history is
printed through 1ogs: on the bottom of the screen.

MOZART Management Console(ENG)

52

B Mozart Product Configurator

Product Management
License
Service Monitoring
Packages

Configuration
MozartobScheduler
Mozartanagementservice

MozartServerSeryice

Change password
Show Tutorial

Service Monitoring

Installed Services:

Lo o]

Name Statis Drescription
Mozartdobscheduler Stopped MozartdobScheduler
MozartvanagementService Stopped MozartManagementService
MozartServerservice Stopped MozartServerService

Logs:
Evert Logs:
Cipen Event Viewer

5. For updating service component or domain library, repeat the steps from 2~4.

3) Setting JobScheduler and Server Service

Configuration

Before starting the services of MOZART Server, the location of the

workingbirectory and other settings should be applied to the configuration files
first. Each service has its own configuration file and is created inside of «rrogram

pata%\Mozart\customconfigs . The following explains the steps to set the

configuration file.

1. If any of the services of MOZART Server is installed, the name of the
installed service is shown through configuration . First, move to

MozartJobScheduler by clicking the name.

2. In typical cases, all options are deactivated except for workingbirectory

configuration. In case other settings require to be configured, check the
option to change and apply the value.

3. Next, move to wozartmanagenentservice . The changes made for the service is
saved automatically to the configuration file when moved to another service.

MOZART Management Console(ENG)

53

[Mozart Product Configuratar EI@
Ar e Mg Package Information

License
Instaled Packages:
Service Monitoring Mame Yersion ReleaseDate Description InstalDate
Packages ¥l cller 11! E 5] 2 B8 Uninstall
. MozartManagementService 2019.115.0.0 2019-03-18 2019-03-18 Uninstall
Configuration
MozartServerService 2019.115.0.0 2019-03-18 2019-03-18 Uninstall
MozartdobScheduler Gererl 01211500 20190318 2018-03-18 Uninstzl
MozartManagementService
Mozartserverseryice
Mew Package Instalation: Select Packade File Instal Cancel

Logs:

As same as wvozartiobscheduler all options are deactivated except for
workingbirectory . In case other settings require to be configured, check the
option to change and apply the value. Once all changes are made, move to
mozartserverserivee . The following sample below shows how to set shortcut.

[Mozart Product Configuratar EI@
Product Management - =
g JobScheduler Package Configuration
License
Service Moritoring 7] Service Fort
8000
Packages
Configuration [T JobScheduler Channel Port
MozartJobscheduler oooe
MozartManagementService
Working Directory
MozartServerService

|C Mwmsimozart ‘ [Browse

[7] Thread Fool Size
10 :

[T Performance Moritor

True

MOZART Management Console(ENG)

54

After setting the shortcut , @ new folder is created and can be seen from
MMC. If the editable option is checked, files can be uploaded from the

Shortcut

5. In wmozartserverservice , all options are deactivated except for workingbirectory .
In case other settings require to be configured, check the option to change
and apply the value. The following sample below shows how to configure the
model result download information 2pp output dir .

E Mozart Product Configurator

Product Management
License
Service Monitoring
Packages

Configuration
MozartlobScheduler
MozartManagementSer

MozartServerService

(=8 o =

Management Service Configuration

[7] Service Port
5000

[T Jobscheduler Channel Port
EEES) :

Working Directory

|C:\vm5\mnzart H Browse]

Defaclt Shorteuts

Ediitable Add

Autolpdate foll ; rEAUtolUpdate -Ed\t

4) How to Start JobScheduler and Server Service

Once all the changes are made for each of the services, move to rroduct

Management > Service Monitoring . FrOM service Monitoring , yOU can start/stop the

services and monitor the service status. Also, a button to open Windows Event
Viewer is provided which ables to check more details about the service status.

The following explains the steps to operate the MOZART Server services.

1. The list of installed services can be found through service monitoring . From
this list, the services can be started or stopped individually or all together at
the same time. To start or stop the service, select a service and click on the
mouse right-button to activate the menu to start/stop the service. The
progress of service activation/deactivation is printed out through ogs:

MOZART Management Console(ENG)

55

[2% Mozart Product Configurator =R EcE ===

Product Management Service Monitoring

License

Installed Services:

Service Monitoring Marme Status DCescription
Packages MozartobScheduler Stopped MozartdobScheduler
. MozartManagementService Stopped MozartManagementService
Configuration

MozartServerservice Stopped MozartServerService
MozartdobScheduler
MozartManagementService
MozartServerservice

Logs:

Stopping service MozartlohScheduler'.. .Done

Stopping service MozartvanagementService'...Done

Stopping service WozartServerService',.Done

Event Logs:

Cpen Event Yiewer

When All Task is selected from the menu, the state of all the services will
change to the selected state. However, the state that could be selected
depends on the current state of the selected service. For instance, let's say
the state of mozartmanagementservoce IS running and the state of the other
services is stopped . In this case, when All Task menu is activated from
MozartManagementServoce , Since the selected service currently running, the only
option that could be chosen is to stop the service. However, the other two
services are already stopped, so in this case, selecting All Task is
redundant.

2. 1ogs: shows whether the service name registered in the Windows Services
is running properly or not. However, it is hard to know whether the actual
services of the service name is running properly or not through 1ogs: . For
instance, to check the state of peploymanagementservice and TriggerJobservice ,
which are the actual services in wozartmanagementservice , click [Open Event
Viewer] button on the bottom of event Logs: . Then Windows Event Viewer
will open and will show the state of actual services of the service name.

MOZART Management Console(ENG)

[Mozart Product Configuratar EI@

Product Management Service Monitoring

License
Installed Services:

Service Monitoring Name Status Description

Packages i 3 d 0 "

. MozartManagementService Stopped MozartManagementService
Configuration

MozartServerservice Stopped MozartServerService

MozartobScheduler

MozartManagementService

MozartServerservice
Logs:
Stopping service MozartlohScheduler'.. .Done -
Stopping service 'MozartvanagementService'...Done
Stopping service WozartServerService',.Done I

Evenit Logs:

Cpen Event Yiewer

The access to the directory where MOZART Server is installed can be denied
due to Windows policy. In this case, the services to operate MOZART Server
may not start properly. The log on authentication of the service should be set
to start as Administrator to solve the authentication problem. To set
Administrator account, start services.nsc and set the account to the
properties of each of the services vozartserverservice , MozartJobscheduler , and

MozartManagementService .

4 Services - [m] X
File Action View Help

&= @ E =z Hm »eonwp

2 Services (Local) | . Services (Local)
Mozart Server Service Marne . Description Status Startup Type Log On As &
erver § — Running Automatic 3

Stop the service £ MetTep Port Sharir R Disabled Local Service

Restart the service s
Sk Netlogon Step anual Local Syste...
Q MNetwork Connectic Pause Running Manual (Trig... Local Syste...

Description: X -5k Network Connectic Resume tanual Local Syste...

Mozart Server Service =
54 Network Connectn, Restart Manual (Trig... Local Syste..,
&l Metwork List Servic Running Manual Local Service
&k Network Location 4 All Tasks > Running Automatic Network 5.,
{}:Ntt\work Setup Sen Manual (Trig.. Local Syste..,

Refresh
Eh Network Store Intel Running Automatic Local Service
Q«, Offline Files Properties Disabled Local Syste..,
25k Optimize drives Hel Manual Local Syste..,
& Performance Coun i hanual Local Service
Gk Performance Logs & Alerts Performanc... hanusl Local Service
£k Phone Service Manages th.. Manual (Trig... Local Service
{'}:Plug and Play Enables a c.. Running Manual Local Syste...
£ Portable Device Enumerator... Enforces [: 1 Manual (Trig... Local Syste..,
Lk Power Manages p.. Running Automatic Local Syste...
54 Print Spooler This service ... Running Automatic Local Syste...
() Printer Extensions and Notif.. This service .. Manual Local Syste ..
ik Problern Reparts and Soluti.. This service .. Manual Local Syste...
Gk Program Compatibility Assi... This service .. Running _ Automatic Local Syste... ¥
', Ectended 4 Standard /

Cpens the properties dialog box for the current selection,

MOZART Management Console(ENG)

57

Mozart Server Service Properties (Local Computer) X
General LoaOn Recovery Dependencies
Log on as
() Local System account
Allow service to interact with desktop
(®) This account: Administrator Browse...
Pazzword: (I YT Y
Carfirm paggwu[d: SRR BERRRARE
Ok Cancel Apply

¢ MOZART Server is installed with the account with Local services
authentication.

« In the authority of the directory where MOZART Server is installed is
higher than Local services , then the procedure to add the Administrator
account as mentioned above is required.

5) How to Acquire License Distribution Information

The license of MOZART Studio can be activated from MOZART Server through
the network connection. When each time MOZART Studio license is activated,
the information can be found through the wozartserverservice of the configuration
section of the MOZART Product Configurator. The following explains what
each of the columns stands for.

MOZART Management Console(ENG)

58

¢ IssuedTime : The time MOZART Studio licensed was issued.
¢ Machine : The MAC address of the machine issued with license.
¢ Product : The name of the product the license was issued.

¢ name : The user name.

3 Mozart Product Configurator |;|i-

Product Management Server Service Configuration

License

i Local License Issue History:
Service Monitoring L Service Port Y
5000 2 Issued Time Machine Product name
Fackages Z
configuration 2013-03-21 10:30:48 BC:EE:7B: lse studio JWwkIM
< [Jobscheduler Channel Port 2019-03-21 12:05:58 BCIES: 7B:BAB3:39 aps studio TWKIM
MozartlobScheduler 2896
MozartManagemeantService
Warking Directory
MozartServerService
|C:vaszozart | [Erowss |
App output dir
|C:vaszozartWResu\ts | browse
[wveb output dir
Change password b crmse
Show Tutorial < m >

6) How to Remove Install Data and MOZART
Product Configurator

This section is for those who do not want to continue to use MOZART Server
anymore and wishes to remove it.

To completely uninstall MOZART Server product, the services of MOZART
Server and Domain Libraries should be uninstalled first through MOZART
Product Configurator. Otherwise, MOZART Server service or Domain Library
cannot be removed if the MOZART Product Configurator is uninstalled prior.

In case MOZART Product Configurator has been removed before MOZART
Server service or Domain Library, reinstall MOZART Product Configurator as
described in 1) How to Install MOZART Product Configurator using
MozartsServer.setup.msi installation file, to delete the MOZART Server service and
Domain Library. The following explains on how to uninstall Install Data and
MOZART Product Configurator.

MOZART Management Console(ENG)

59

1. GO tO Product Management > Packages .

2. Select the component to delete from the list in tnstalled packages

3. Click [Uninstall] button to remove the selected component. In case the
component to be removed is a service, and the service state is running , the

service will be stopped automatically before removed.

Eﬁ Mozart Product Configuratar

Product Management
License
Bervice Monitoring
Packages

Configuration
Mozarobscheduler
MozartflanagementService

MozartServerService

[E=3 N)
Service Monitoring

Installed Services:

Furnin g

MozartManagementService Running MozartWanagementService
MozartServerService Running MozartServerService

Logs:

Starting service 'MozartlobScheduler'.. Done -
Starting service 'MozartanagementService'...Done
Starting service 'MozartServerService', . Done

Event Logs:
| Open Event Viewer |

Appendix #1 : How to Activate MOZART
Server License through MOZART
Product Configurator

You can check the license status, activate and reactivate the MOZART Server
license through MOZART Product Configurator. The following shows how the
license information of the MOZART Server is acquired and how you activate the

server license.

MOZART Management Console(ENG)

60

E Mozart Product Configuratar
Product Management
License
Service Monitoring
Packages
Configuration
MozartdobScheduler

Mozartanagementseryvice

= lfeE=s
License Information
Mac Address: 00:15:50:01:09:22
Run Mozart Product Activation Tool
Activation Information:
Companent User Expiration Date
SERVER WIS Server 12/31/9998 12:00:00 AM

Activation Information Shows the current license status. In case more than one

license is issued, that information will also appear through Activation tnformation .

You can activate or extend your MOZART Server license through run mozart

product Activation Tool . If the license activation code is required, please send a
request mail to support@vms-solutions.com.

How to Upgrade MOZART Server

To know how to upgrade MOZART Server product go to How to Upgrade
MOZART Server.

How to Update MOZART Server

MOZART Management Console(ENG)

61

mailto:support@vms-solutions.com
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#d076a29413114ea79b87a9587e6033b5

How to Update MOZART Server

This is the user's guide on how to update the version of MOZART Server service
components (Management Service, Server Service, JobScheduler Service) and
domain libraries.

Specification Requirement

¢ Affected Version : Mozart Server 2019.115.000.0 and above
¢ MOZART Product Configurator Installed

MOZART Server Service Restart Guide

The following table shows which services of MOZART Server requires restart
when MOZART Server services, Domain Library, and MOZART Product
Configurator versions are updated.

MOZART Server Service Restart Guide

Version Update Component Name Require Service Restart(O/X)
MOZART Product Configurator X
Domain Library X
Management Service O (Management Service only)
Server Service O (Server Service only)
JobScheduler Service O (JobScheduler Service only)

The services of MOZART Server needs restart only when the version of the
corresponding service is updated. This is because the folders for each service is
seperated and each service works independently.

MOZART Management Console(ENG)

62

https://www.notion.so/MOZART-Product-Configurator-90f5e7001c6445f9942f4a266c6f8815
https://www.notion.so/Domain-Library-580c18388efd43e4a0ca2dffc9334675
https://www.notion.so/Management-Service-1fd052b9110b4af59f033507c0d83d1d
https://www.notion.so/Server-Service-cbf74bd6cb1c4ba6b3950dfb9c8ac6cc
https://www.notion.so/JobScheduler-Service-a7a167afb25347db83c4223aecba04a2

How to Know Which Components to
Update

You do not have to reinstall all the components of MOZART Server to update the
versions. The release note for each version release gives instructions on which
component requires installation for version update. However, there will be no
instructions for domain library updates since version update for domain library
concerns the domain library versions of the client product. So the release note
provides the version information for domain library and leaves the judgement to
users whether to update domain library or not.

If you are installing the components of MOZART Server for the first time, please
install MOZART Product Configurator and then install the components using the
mdz files. Otherwise, please check the release note and install the ndz files of
the components that require version update.

How to Update the Version of MOZART
Product Configurator

Warning: Please close MOZART Product Configurator if it is running before
applying the update. Unknown problems may occur if version update performs
while MOZART Product Configurator is running.

The steps to update MOZART Product Configurator is as follows:

1. Connect to www.vmsmozart.com from your web browser and log-in. Then go
to [Product] > [Product Download].

2. Select the version to download to your PC from the list.

3. Select the language(KR/EN) of "Mozart Server_language (Configurator) and
click [Download] and download [MozartServer] folder.

4. Run wozartserver.setup.msi file from the download folder to start MOZART
Product Configurator version update.

MOZART Management Console(ENG)

63

http://www.vmsmozart.com/bbs.php?mc=bbs&md=list_test&db=7

5. Click [Next] button from [Welcom to the Mozart Server Setup Wizard]
dialog to procceed to the next step.

6. Read the End-User Licens Agreement and check [l accept the terms in the
Licens Agreement] to continue the installation. If you disagree with the
terms, the installation will not proceed. After agreeing with the terms,click
[Next] button to continue.

7. Configure the directory to install the update. Click [Change...] to change the
directory from the default path. Otherwise, click [Next] button to move to the
next step.

8. Click [Install] from [Ready to install Mozart Server] dialog to start the
version update of MOZART Product Configurator.

9. After install is complete, click [Finish] button to close the install wizard
window complete the installation process. If you want to run MOZART
Product Configurator after installation, check [Launch Configurator] before
closing the wizard.

How to Update/Rollback the Version of
MOZART Server Services

The procedures to update/rollback management service, server service , and
Jobscheduler service are the same.

How to Update the Version of MOZART Server
Services

The steps to update the version of MOZART Server Services are as follows:

1. Follow the steps 1~2 of How to Update the Version of MOZART Product
Configurator.

2. Select the Ianguage(KR/EN) of Mozart server_Lnaguage Install pata and click
[Download] . Downlaod Jobscheduler.mdz , ManagementService.mdz ,

serverservice.mdz files.

3. Run wozartproductconfigurator.exe . The file is in the path where MOZART
Server is installed.(i.e C:\Program Files (x86)\VMS\Mozart\Server)

MOZART Management Console(ENG) 64

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#d076a29413114ea79b87a9587e6033b5

4. Input password from the log-in window and click [OK] button to access to
MOZART Product Configurator. (Init Password : mozart)

5. Go to [Service Monitoring] and stop the service to perform version update.
To stop the service, Select service> Mouse right button click > Select
[Stop].

6. Go to [Packages] and click [Select Package File] button, and select the
mdz file from the file explorer to perform the update. Only one ndz file can be
selected and installed at one time.

7. Once the ndz file is selected, click [Install] button to install the update.

8. After install is complete, go to [Service Monitoring] and restart the service.
To restart the service Select service> Mouse right button click > Select
[Start].

How to Rollback the Version of MOZART Server
Services

The steps to rollback the version of MOZART Server Services are as follows:

1. Run wvozartproductconfigurator.exe . The file is in the path where MOZART
Server is installed.(i.e C:\Program Files (x86)\VMS\Mozart\Server)

2. Input password from the log-in window and click [OK] button to access to
MOZART Product Configurator. (Init Password : mozart)

3. Go to [Service Monitoring] and stop the service to perform version update.
To stop the service, Select service> Mouse right button click > Select
[Stop].

4. Go to [Packages] and click [Rollback] of the service to rollback to the
previous version.

5. After rollback is complete,go to [Service Monitoring] and restart the
service. To restart the service Select service> Mouse right button click >
Select [Start].

How to Update Domain Library Versions

MOZART Management Console(ENG)

When you install domain library, the installer creates a folder structure
[Execution] > [Version Number] in the location specified in execution path: Of
MOZART Configurator for Server. This means that when you perform update for
domain library, the installer does not overwrite the files of the previous version,
instead creates a folder using the version number to be installed as its name and
copies the DLL files. By this way, you can manage and operate the domain library
of MOZART Server by their versions. In other words, you can run vModel and
engine DLL files built from different client versions from a single MOZART Server.

The steps to update the version of domain library are as follows:

1. Follow the steps 1~2 of How to Update the Version of MOZART Product
Configurator.

2. Select the language(KR/EN) of wmozart server Language Install pata and click
[Download] . Downlaod the domain library files to install.

3. Run wozartproductconfigurator.exe . The file is in the path where MOZART
Server is installed.(i.e _C:\Program Files (x86)\VMS\Mozart\Server)

4. Input password from the log-in window and click [OK] button to access to
MOZART Product Configurator. (Init Password : mozart)

5. Go to [Packages], click [Browse] button on [Execution Path:], and set the
path to install the domain library files.

6. Click [Save] button to save the domain library install location information and
to complete the setting.

7. Go to [Packages] and click [Select Package File] button, and select the
domain library mdz file from the file explorer to perform the install/update.
Mupltiple mdz files can be selected.date.

8. Once the ndz file(s) is selected, click [Install] button to install the update.

Introduction of Project and Deploy
Management

MOZART Management Console(ENG)

66

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4bf820f364c14189bf9a8c691c0fb143
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4bf820f364c14189bf9a8c691c0fb143

Processes and policies in manufacturing plants usually do not flow consistently
from the initial stage, but keep changing over time. For responding these
changes, it is essential to update Task dIl and vmodel files registered in the
server. Because servers refer to these files when executing tasks, unexpected
errors may occur if the file is changed arbitrarily while the engine is running. Even
if the Job / Trigger is activated according to the scheduled time or event and the
end time can be expected, a human mistake can occur. In addition, from the
viewpoint of the server management, it is difficult to manage the history and
respond to urgent situations such as rollback unless the administrator care about
the history because servers refer to the dll and vmodel files registered in the
user-specified Working Directory.

To resolve above problems, MOZART Management Console (2.0) Client and
Server products provides DeployManagement Service, which allows users to
manage files on a project basis and schedule distributions by checking whether
jobs / triggers are performed. The following descriptions are about the
introduction of project management and scheduled deployment.

* Project Management

Project is a management element that manages dll and vmodel files, the
engine execution log, and the result files of the task by mapping Job/Trigger.
A project is operated through Server's DeployManagement Service, and the
information related to project is stored in DeployManagement DB(database)
file. By saving the information in the database, the management of project is
available and administrators don’t need to manually manage the version
even if the change occurs in the project. The below figure is about the way to
distribute files through projects.

MOZART Management Console(ENG)

67

MMC

Upload

Changeset | Deploy Project

L
Commit

Folder " Folder

r
Send Request Receive Request
¥

Server(JobScheduer)

Project Management Operation Behavior

When distributing files by MMC, files are not uploaded directly to the Projects
folder. When users set up a distribution schedule for files and commit it, the
information of changes and folder (Changeset) are created. The changeset
information is saved in the DeployManagement.db file and files to be
deployed are uploaded to the Changeset folder and waiting for the
deployment time. At that time, triggers are checked by communicating
between DeployManagement Service and JobScheduler. When triggers end,
files stored in the Changeset folder are uploaded to the Projects folder. The
Changeset folder is created when changes are made and it is managed by

number.

MOZART Management Console(ENG)

68

Logs
Prejects

| Working Directony |

Rezults

—|—{ Changesets{Changesst Folder)

[Project Name]

11

_‘ [Changeset Number] | b
13

14

:

—L Projects(Project Folder) |

|

[Project Name]

<<Filess =

Projectl
*project?
Project3

o File Distribution Scheduling

A job can have multiple triggers. If the distribution of dll and vmodel files
is needed to the job, it is difficult to distribute all the files with the
consideration of the end time of the triggers mapped to jobs by person. In
addition, even if you know that all triggers are terminated, triggers can be
executed at scheduled times during file distribution and it may cause
unexpected accidents. To solve this problem, in MMC2,
DeployManagement communicates between DeployManagement and
JobScheduler Service. DeployManagement passes the list of files to be
deployed to JobScheduler and JobScheduler checks the list and returns
a list of Job / Triggers that use target files. DeployManagement asks
JobScheduler to limit the execution of target triggers for file distribution.
To prevent the distribution failure, the trigger starts at the scheduled time
during the distribution process. JobScheduler restricts the execution of
target triggers, and files waiting to be deployed are uploaded from
Changeset to Projects folder when it is confirmed that target triggers are
not executed in DeployManagement. After the file distribution is
complete, DeployManagement asks JobScheduler to release the target
trigger execution restriction.

MOZART Management Console(ENG)

MMC DeployManagement Service JobScheduler Service

Deploy Schedule
Files to deploy
Commit to deploy files Save files to Chamgesat folder

[Standby until dep\o) schedule]

Are there any Jubﬁr\ggers related
to the contents to be deployed?

Related Trigger List

Suspend execution of the
JobyTrigger in the list

Request not to
execute selected
triggers from
the list

Related Trigger List Restrict triggers not to
execute from the next

schedule

Check if all

Related Trigger List
related trigger 1:l send trigger execution state

completed

Request

Check deploy status from —
[history view [Deploy File] -

Server & Client Setting Overview

There are 6 services that are operated by MOZART server and these can be
modified through server setting.

o Job Scheduler Service : This is server's Main Service that executes Job
according to Trigger information registered in Server.

o DeployAgent Service : This is a service to exchange files.
Transfering(upload/download) files among server and MMC is done
through this service.

o OutFile Service : This service provides MOZART Studio with list of
compressed files of MOZART JOB execution results and to download the
files to the studio.

o License Service : This is a service that MOZART Server issues license
automatically to MOZART Studio used by general users (Note : Local
License Service Method)

MOZART Management Console(ENG) 70

o DeployManagement Service : This service manages the changeset
history of Job, Trigger, file distribution and Project of MOZART Server.

o TriggerJob Service : It is a service to let users execute triggers from
other than MOZART Management Console. (i.e. Web application).

When MOZART server is installed, all of the services above are executed.
Only Job Scheduler is executed as an independent Instance and other
services are executed in the same instance(Server Service). Configuration in
Server and client for each service, refer to the corresponding content's pages
respectively.

1. Configuring Model Download : This explains about Server and
Client(MOZART Studio) configuration methods for downloading a Model
from server.

2. Configuring_AutoUpdate : This explains how to update Client(MOZART
Studio - Site's specific Studio (Purchased one)).

Refer to_Server Installation Manual for information of Server installation.

Local License Service Concepts

Local License Service is an authentification service that is provided by
MOZART Server. When the license of MOZART Server is authentcated, the
server automatically distributes authentication keys to user PC using
MOZART Studio.

MOZART Management Console(ENG)

71

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#aa625ed30912429aa98c6624ab2629b7
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#5c80ecc8f7574782846fb7f7379da9ea
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#9494897449924dcb9d0d0a1306fb7460
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#9494897449924dcb9d0d0a1306fb7460

Client Server

)

= P

Executed if there is
no License Issue record

Activation tool License Service
Studio Exe _—
Activation user imo Server License
Key Request check
License info Creaticn cf_Lc:caI Au‘;ctc_lr_‘::ﬂcmcizfia;fr Mozart Server
License File license key License Key code License info file

{Product Info)

License info file

As seen above, the server providing license service should obtain MOZART
Server License in advance. Then, newly installed MOZART Studio should get
a license authentification through Activation Tool when MOZART Studio is
executed without an issued license information. At this moment, license can
be issued from Local License Sever by the following procedure.

1. If there is no license, Activation tool shall activate. Click "Next" button to
proceed.

Mozart Product Activation Wizard ==

Welcome
To continue, click Mext

This Product is not activated wet,

[et Cancel

MOZART Management Console(ENG)

72

2. After setting Activation Option to "Lease a license from MOZART License
Server", click "Next" button to proceed to the next.

Mozart Product Activation Wizard

=3

Mozart Product Activation Option

If wou want to request Mozart product activation code, please choose one of following options:

Request activation code by connecting Mozart License Web Service,

Request activation code by sending e-mail,

If wou want to activate your Mozart product, pleasze choose one of the following options:

Erter the activation code thatyou received by e-mail,

@ Lease alicense from Mozart License Server,

Previous ‘ | Mext Cancel

3. Input user name and IP address of the server that has the license
service.

Mozart Product Activation Wizard

Product Activation

User Mame:
HOMGKILDOMG]

kS Address:
00:15:50:0L64:02

License Server {ex) 'http:ff122.212,22.233:8000/mozart’,
httpfflocalhostB000, mozart

Previous | | [ext Cancel

4. If the license is issued properly, the following confirmation message
window should be displayed. Otherwise, check if the server connection

MOZART Management Console(ENG)

73

information is correct or if the service is working fin

Mozart Product Activation Wizard ==

Finish

You have successfully verified license,

= Product: FP Studio
» User Mame:HOMGEILDOMNG
= Expiration Date: 9998-12-31

‘ Previous ‘ | Finish | | Cancel ‘

The license service is registered to Window Service when MOZART Server is
installed. If license service is activated for the first time through [Start menu-
>Start Server Service], it is set to start the service automatically from the
next reboot. Therefore, the administrator(or operator) does not need to
perform additional settings once the service is started.

Model Download Setting

This section explains the configuration steps to inquire and download the Job
result files executed from MOZART Server to MOZART Studio.

MOZART Management Console(ENG)

74

Client Server

—~ J———

II [_ | |
studio Exe IE“I:Zcell(lTiﬁt
file list
medel gerver info Download . !
model zip file model zip files OutFileService
Unzip model
& (open)

abp..c.onﬂg
(xml)

Server Configuration

madel file

Job Execution

moael zip files

+ model rootfolder
+ delete password

JobScheduler

[

abp..c.onﬂg
(xml)

In order to configure Model Download in MOZART Server, the root folder
that saves the compressed Model files needs to be designated, permission
granted to delete the Model file from studio and password to delete the

file needs to be set.

o Designate root folder where Download Model in Server is saved
:[Designating Root Folder] Include the following lines in
MozartServiceHost.exe.config file(located in the folder where MOZART

Server is installed) to designate root folder.

1) Configure a Root that a Model executed automatically by

JobScheduler is saved in
Config Section : <appSettings>

Key : app-output-dir
Configuration example :

<appSettings>

<add key="app-output-dir" value="D:\MOZARTServer\Models"/>

</appSettings>

MOZART Management Console(ENG)

75

2) Configure a Root that a Model executed manually by developer or
operator is saved.

Config Section : <appSettings>
Key : web-output-dir
Configuration example :

<appSettings>
<add key="web-output-dir" value="D:\MOZARTServer\ModelsManual"/>
</appSettings>

o Configure where a Model in Server can be deleted from a client or not
and set a password if a Model is deleted.

The compressed Model file in the server can be inquired through
[File>sDownload Data From Server] menu in MOZART Studio. The file
can be deleted from the client and a password is required to delete the
files. The password can be set through MozartServiceHost.exe.config file
by including the following lines. The Key and Section could be set
through here.

Config Section : <appSetting>
Key : password
Configuration example :

<appSettings>
<add key="password" value="MOZART"/>
</appSettings>

* If "password" is not set, the compressed Model cannot be deleted from
client.

Client Configuration

Client should designate a Server that Model is downloaded from and the
folder for each Model that is saved in the corresponding server. In order to

MOZART Management Console(ENG)

76

configure this, first execute OOO_Studio that is purchased by each site and
use Tool>Options menu.

F |
| Preferances M
a4 (General)
Autolpdater Output download sites [] B
Downloads
MName SubDir Url
TestModel TestModel http://192.168 1.46:8000/mozart/QutFileService

Test2Model http://192.168.1.46:8000/mozart/ OutFileService

[ok || Cancel

o Select Downloads from the Tree at the left side.

o Add Download site to the list at the right side. Press [+] button at the top
to add the site.

)
o Add site e

Mame

SubDir Test2Model

URL http://192.168.1.46:8000/ mozart/OutFileService
ex) http://192.168.25.61:8080// mozart/OutFileService

QK] ’ Cancel

o Name : This is a site name that is displayed in a combo box when a
Model is downloaded.

o SubDir : This is a name of a folder where Models are saved in Server.
This is configured as a relative path with respect to Model download base

MOZART Management Console(ENG)

folder that is configured in the Server.

o URL : This is a Service URL for Server that provides Model file download
service. The format is same as the example above. Input URL that is
confirmed by user site's operating team. Generally Port and IP
configuration can be different. This should be checked with the operating
manager after setting the server.

o Multiple sites can be registered and the display order in Download
window can be adjusted through the arrows at the top.

o In order to modify information of the registered site, double-click or use
[...] button at the top.

o In order to delete any added object, use [-] button.

Like the above example, multiple folders in a single server can be registered
or multiple servers can be registered. After configuring like above, Model can
be downloaded by using Model search window through [File >Download
Data From Server] menu from Studio.

When the menu is executed, a list of every registered server name is
displayed in Download Server combo box like the following figure. Then,
select a Model file and press download button in order to download a specific
Model from a list of Models in the selected server.

MOZART Management Console(ENG)

78

ot Download Data From Server _] e S

Download Server: TestModel n
TestModel I

Drag a column hear Test2

File MNarme Run Time w Check Run Mode
model_20150120004958.zip 2015-01-20 00:49:58 Auto
model_20150120004626.7ip 2015-01-20 00:46:26 Auto
model_20150119134222.zip 2015-01-19 13:42:22 Auto
model_20150119122129.7ip 2015-01-1912:21:29 Auto
model_20150119121045.zip 2015-01-19 12:10:45 Auto

Record1of 5 » # M

Download Path : m Open Folder | [] Auto Classify

AutoUpdate Setting

To update the client version automatically, the update files should be
compressed and uploaded to the designated user group specified server and
the client should have the update server connection information. The client
requests the server for any updates and if the update exists the client will be
updated. The update procedure is seen through the following figure.

MOZART Management Console(ENG)

79

Client Server

Py
[
N
s
Studio Exe
Update Creation of
check | — Manifest File
: 't-estxml Q
manitest.
N Download /&4\
app.config P [|
update files -
(xmnl) P [Copy of File Distributer
| i to-be-updated
Post —
Frocessing Update files

File to-be-updated

In a company level, there could be a server machine already existing to
distribute updates. Whether using an existing server or a new server for Auto
Update, the server should have IIS installed. The following explains how to
configure Auto Update server.

[Server Requriements |

o .NET Framework 4.0 or above

o IS (Internet Information Server) version 6 or above

[How to configure a Server]

1. Designate a folder where target files for update are saved.
2. Execute "lIS(Internet Information Service) Manager".

3. Add an Application Program Pool from [Application Program Pool ->
Add Application Program Pool] menu. Set .Net version to 4.0 (The
name of application program can be defined as you wish. EX)
MOZARTUpdateServer)

4. Add an Application Program from [Site -> Default Web Site -> Add
Application Program] menu. Input value can be set as below.

MOZART Management Console(ENG)

e Alias : Input an alias for the application program to be registered.
Alias is the name required when a Server URI is entered in
client. When Download URL value is configured in client, an
input format like "host address/[alias]/manifests.xml" is used.

o Application program pool : Add Application Program Pool by
clicking [Select] that was included from Step 3.

o Actual path : Designate a folder where target files for update is
saved as explained in Step 1.

5. Edit Mainfest through MainfestEditor. The file is located in [Update]r
where MOZART Client installed. Please refer to How to edit Manifest
file, to find more details how to edit Mainfest.

6. An xml file will be generated. Copy the generated xml file to the update
target folder. When this is done the setting on server side is completed.

The port used from Default Web Site should be opened. In general, the port
number is 80 but it could be blocked according to the server setting. Error
may occur when the port is blocked so make sure to check the port setting
during server configuration.

[How to configure client]

1. On the client side, AutoUpdate and Update Server can be configured
through [Tool>Options] menu in the Studio.

2. Each configuration item can be configured as below.

MOZART Management Console(ENG)

81

=) Preferences I&J

4 (General)
AutoUpdater V| Auto update

Downloads
ApplicationId {3ASF7T94F-D23A-484D-B766-985810801DFD}

ex) {3ABFT94F-D23A-484D-B766-98581 DA01 DFD}
Download URL http://192168.1 46/studioupdate/manifests.xml
ex) http://192.168.255.255/Update/manifests.xml

Downloader BITSDownloader w ||¥| Use this downloader

Parameters userMames=
password=
authenticationScheme=BG_AUTH_SCHEME_MTLM
targetServerType=BG_AUTH_TARGET_SERVER

OK l | Cancel

¢ Auto update : If checked, auto update is automatically activates
according to the following input information. If not checked, auto
update is deactivated.

e Application Id : Unique ID of Studio program. User should not
modify this. When this is compared with Server's manifests file, only
update information for target Application is compared.

o Download URL : Update Server's URL. The format should follow as
below.
+ format: http://[SeverlIP]/ [Alias of Application program used when
Server is configured])/manifests.xml
+ [ServerlP], [Alias of Application program used when Server is
configured] are required to be edited. Configure the corresponding
part after checking it with Client Ul Development/Operating
organization.

o Downloader : Select a Downloader. Default is BITDownloader.

o Parameters : Parameter used for Server authentication. This part
does not need to be modified.

3. When Studio is restarted after items are configured, the following
download window is activated.

MOZART Management Console(ENG)

+ Saoftware Update Li_E-J

Tl A new version of FP_StudioUpdate is available!
E‘l/\/_% FP_StudioUpdate 1.0 is now available. Weould you like to downleoad it now?

Releae Notes:
FP_studio update test

[Skip this version] l (& Remind me later I [Update

» SkKkip this version : Skips to check for any updates on the next start.

 Remind me later : Asks to update the version on the next start.

o Update : Download, updates the version and restarts the Studio.

Manifest Editor

Manifest Editor

Manifest Editor is an editor for creating/editing Manifest file. When MOZART
Client is installed, ManifestEditor is also installed in Updater folder
subordinate to MOZART's installation path.

1. Run ManifestEditor.exe from the folder where server execution file is
located. MainfestEditor consists of four tabs as shown below.

MOZART Management Console(ENG)

83

B Updater Manifest Toal =B8] =
Manifest Properties | Downloader | Application Properties | Activation Process|
Manifest Properties
Manifestld Iﬂ/ | Mandatory
Title Version
Release Notes
N
Included Manifests
Location
Manifest Id
MNew | | Open | | Save Validate ‘ | View | | Close

2. Fill in the information through Mainfest Properties Tab.

e Manifestld : This has the same ID as the distribution ID that is
changed whenever a new update file is distributed. Client discerns
whether AutoUpdate should be executed or not by comparing the
corresponding Manifestld's value. New GUID can be created through
[Generate] button at the right side. It should be changed during each
distribution. (®*¢xml document key = manifestid)

o Title : Name of the corresponding Manifest file (?¢xml document
key = title)

e Version : Version of the distributed product. When it is distributed,
update is executed according to its rule. (>¢xml document key =
version)

» Release Note : Brief notifications about the fixes in the distributed
version. This is updated according to the distributed contents. (>¢xml
document key = description)

Example of Manifest file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd
="http://www.w3.0rg/2001/XMLSchema"
manifestId="{AF7A3BD5-10A1-4155-BBF8-631906D86DAE}" mandatory="False" xmln
s="urn:schemas-microsoft-com:PAG:updater-application-block:v2:manifest">
<title>FP Studio</title>
<version>1.0.3</version>
<description>first release</description>

MOZART Management Console(ENG)

<application applicationId="{3A8F794F-D23A-484D-B766-98581D801DFD}">

<entryPoint file="FP_Studio.exe" parameters="" />
<location>.</location>
</application>

<files base="http://XXX.XXX.xXxXX.XXX/MOZARTUpdate" hashComparison="No'">
<file source="update-files.zip" transient="No" />
</files>
<activation>
<tasks>
<task type="MOZART.AutoUpdater.ActivationProcessors.WaitForApplicati
onExitProcessor, MOZART.AutoUpdater" name="WaitForApplicationExitProcesso
r' />
<task type="MOZART.AutoUpdater.ActivationProcessors.ApplicationDeplo
yProcessor, MOZART.AutoUpdater" name="ApplicationDeployProcessor" />
</tasks>
</activation>
</manifest>

The above example can be found from [MOZART Client
folder>Updater>Server] in manifests.xml file.

3. Fill in the information through Application Properties tab.
This configures information of applications to be updated. The mandatory
configuration items are seen below.

r
5 Updater Manifest Tooi— = | B ||
| Manifest Properties | Downloader| Application Properties |Activation Process|
Application Properties Entry Point
Application Id B File
Location Parameters
Files
Files URI 7] Use hashing [mds -
Source Folder E\Temp',
Files
Add
MNew] [Open] [Save Validate] [View] [Close

Application Properties

o Applicationld : This is a GUID of main update program and uses
GUID in App.config file of the corresponding target file. Two Guid
should be always configured with the same value. (#*¢xml document
key = application/applicationid)

MOZART Management Console(ENG)

e Location : The location where the downloaded file is saved. (>¢xml
document key = application/location)

Entry Point

» File : Name of execution file. For instance, if update for FP_Studio is
configured, the name should be set as 'FP_Studio.exe'. (?xml
document key = application/entrypoint file)

o Parameters : Parameter configured at execution. Seperate
parameter is not necessary for Studio update.

Files

e Files URI : To set URI where downloaded files are located. In
general, the path set in local host is used for the server. (¥¢xml
document key = files/base)

e Source Folder : A local folder where the files are stored is selected.

¢ Files : The section to input files to download from local folder. In
normal cases, the compressed updated file is selected. (¥ xml
document key = files/source)

4. Fill in the information through Activation Process Tab
Select the processor to be used for update. Multiple processors can be

.
& Updater Manifest Toal - - =B
| Manifest Properties | Downloader | Application Properties | Activation Process
Processor Name
Processor Type [Application Deploy e
Processors List
Wa|tFnrAppIl(atlnnExltPrncessnr anartAutnUpdater ActlvatlnnPrn(essnr; WaltFnrAppl\catlnnExltPrn(Es;nr anartAutnUpdats
] m +
Mew] [Open] [Save Validate] [View] [Close

Some files could not be added because they aren't under the specified Source Folder.

MOZART Management Console(ENG)

Enter Processor Name and select a Processor Type. Then, add the

Processor by clicking [Add] button. Processor Types can be seen below.

Several processes can be registered together. The processors for auto
update of MOZART Studio is Application Deploy and Wait For Exit. Refer
to manifests.xml file that is distributed together in server installation
folder. (*¢xml document key = activation/tasks/task)

o Application Deploy : Copies downloaded files into target folder for
update. In case of compressed file, it will decompress the file after
copying is complete.

» File Copy : Copy a specific file to a specific location described in
config file.

» File Delete : Delete files with a specific format in a specific location
described in config file.

» Folder Copy : Copy a specific folder to a specific location described
in config file.

* Folder Delete : Delete a specific folder describe in config file.

e GAC Util : Manage GAC as described in config file using GACUIil.
(i.e. registration/delete/etc.)

o Hash Validation : Compares hash code of a downloaded file
described in config file with the source file in the server.

 Install Util : Manage Service through InstallUtil.
o MSI : Install/delete/patch package configured in config file.

o Start Application : Restart application after file is downloaded and
updated.

e Uncompress : Decompress a specific compressed file to a specific
location described in config file.

o Wait For Exit : Close client for update and standby until update is
completed.

Server Management

MOZART Management Console(ENG)

87

MMC enables the job management on multiple servers. To register the target
server of MMC, MOZART Server should be installed in the corresponding
server. You can use [Add Server Connection] button in Server Explorer to
add a target MOZART Server.

Adding Server Connection

1. Click [Add Server Connection] icon([HHE0|E&]) from the Sever Explorer
tool bar.

2. Type in the information to add the server connection.

Edit && Connect Computer *

Input dizplayving unique name:
|IEIE.1EB.1.1III |

Input the computer you want to manage:

Server: |hﬁp:ff192,lEB,1,1El | Paort: tpp Narme:

Input login infomation:
+ Uger ID |sa | Remember User 1D

+ Password | |

Cancel

Input name : Enter the name that the console manager uses to manage
target server.

Input the computer : Enter the URL of the corresponding server. The
format should follow the example shown above but, using the actual IP
address.

MOZART Management Console(ENG)

88

User ID: Enter the user ID to connect to the MOZART Server. (The
default administrator account is sa.)

Password : Password: Enter the password required to access the
MOZART Server. (The initial password of sa account is "mozart".)

Note

When the MOZART Server is installed for the first time, the
default administrator account and password are included in the
Deployment.db file. When accessing the database for the first
time, you can access it with the default account and password.
The default administrator account / password is as follows.

ax

e UserlID:sa
o Password : mozart
3. Click [OK] after entering all the information.

4. If a server appears with a name through Server Explorer, the server has
been created successfully and ends the server registration.

2| & &

I?

4 gg server Explorer
a0, MMCZ_TEST
- [Projects
| Jobs
| Triggers
[} Systern Log
[} update files
=g Backup
. | Monitor
|%2| Perfarmance
- /9] Shortcuts

2 Users

How to Check Server Information

MOZART Management Console(ENG)

89

You can check the detailed information of server registered in MMC Server
Explorer. In addition to the basic information such as the server name and IP
address, you also can check H/W specification of Server machine, MOZART
dll version installed on Server, WorkingDirectory and Backup, and HDD
capacity status. The below explanation is about how to access Server
information in the MMC Server Explorer.

How to check server information

1. In the Server Explorer, right-click the target server for which you want to
know the server information and click [Server Information] button.

Server Explorer MMC2_TESTfShortcuts

& 2| 6 & Stop Trigger | Auto Refi

a gg server Explorer

4 [MMC2_TFeT Drag a calumnn header F

. Proje Conhed Senver
7 | Jobs | o7 Edit Server Connection
=] Trigg s Resume Job Scheduler
[} Syste

3 updat| = Pause lob Scheduler

Sg Backl 2 Refresh Job Scheduler Status

4 =] Monit
& Al Show Systemn Log
il Er License Inforrmation
i F3 5 Inf ti
a5 H erver Information

2. Check the server information in the Server Information dialog.

MOZART Management Console(ENG) 90

Server Information (23]
Connection
Server Mame: hAMC2_TEST

Server Sddress: http:/flacalhostB000/mozart

Server Specification

Processar: Intel(R) Core{Th} iT CPU 960 @ 3.20GHz
Total Mermory: 3 GB

03 Microsoft Windows T Professional K (64bit)

MET Framewvork: 4.0.30319.1

Installed Component

Mame Creation Time File: Wersion
| MozartServiceHost exe i 2017-03-22 2017.1.108.0
Mozart, Common. di 2017-03-28 2017.1.108.0
Maozart. Cornpression.dll 2017-03-28 2017.1,108.0
Mozart. Core. dil 2017-03-28 2017.1.108.0
Mozart. Data.dll 2017-03-28 2017.1.108.0
Mozart, Data Ertity. dl 2017-03-28 2017.1.108.0
Mozart, Data, Tools.dl 2017-03-22 2017.1.108.0
Disk
Disk: Marme Usages Using Ratio Total (GB) Remain (GB)
Ew Working Directory, DataBackup 55 43
i FahCopyBackup 72 a5
Perforrnance
Trend | Refresh
Itemn Current Average Usage Ratio
CpL 12,26 % 5.64 %
Memory 18.53 %,(1.51 GB) 15,44
Trigger Count a

e Connection : This section is used to check the connection
information of the target server

o Server Name : Server name information entered when
registering this server in Server Explorer

o Server Address : The IP address information entered when
registering this server in Server Explorer

o Server Specification : Displaying H/W specification, OS and .NET
Framework version of the registered server.

o Installed Component : You can check the dll version of MOZART
installed on the target server.

o Disk : Displaying the HDD capacity information of the target server.
Disk only displays the information of HDD where WorkingDirectory
and Backup are located. (Display unit: GB)

o Performance : Displaying the current CPU and memory usage of the
target server and the number of triggers being executed.

MOZART Management Console(ENG)

91

o Trend : In addition to the current usage, you can check the CPU
and Memory usage status of the target server. When you click
the Trend button, the Performance Trend Dialog pops up.

o Refresh : Refreshing the performance information with the latest
one.

How to view Performance Trend

If you click [Trend] button in the Performance area at the below part of the
Server Information Dialog, ¢ the Performance Trend Dialog pops up. You can
check the overall server resource usage and trigger execution status for the
specific period based on the current time through the Performance Trend
Dialog. The following image is an example of MMC's Performance Trend

Dialog.
Performance Trend [r= - S
Period: |1 = |Haours A
Awerage CPU Usage: 18,39 %% Awerage Memory Usage: 169 GE (2117 %) Awerage Trigger Count: 031
100 .
TriggerCount
=l 7 CFPU
Mernary
an 6 ==+ Average CPL Usage
==+ Average Memory Usage
70
5
&0
=
= (=]
L 50 i
<
40 Date: 2017-04-19 PM 1:42:00
a0 TriggerCount @ 3
CPLE 100,00 %
20 22 = Memary: 48,95 %
1
1n
0 0
2017-04-19 2017-04-19 2017-04-19 2017-04-19 2017-04-19 2017-04-19
1300 1310 1320 13350 1340 1350

o Period : Setting the period. The period can be set in hours/days and the
server status will be drawn before the entered period based on the
current time.

o Average : Displays the average CPU / Memory utilization and Trigger
execution count correspondent to the configure period.

MOZART Management Console(ENG) 92

When the user sets a specific period, the server status is displayed as a
graph. The dotted line in the graph indicates the average CPU / Memory
usage during the period, and the solid line shows the actual CPU / Memory
usage during the period. In addition, when you mouse over the graph, you
can see a pop-up window that allows you to check the details of the period.

Downloading & Uploading Local DB
Files

The Mozart server uses SQLite DB files to save logs for any events or
actions that occurred from the server. There are three DB files for each
purpose.

o DeployManagement.db: Contains the changeset logs of Project, Job,
and Trigger. This DB file also contains the user information to give
access to Mozart Server via MMC.

o DeployLogging.db: Contains the logs of the resource utilization of the
server machine.

o SchedulerLogging.db: Contains the trigger run-time and execution logs.

These files could be downloaded through MMC. The downloaded DB files
should be used for diagnosis purposes such as diagnosing trigger failure.
Otherwise, re-modification of the content in the DB file should be done only
when the system could not be recovered without modification.

How to download the DB files

1. Right-click the server node from the [Server Explorer] to download the
DB files from and select [Download Database File

MOZART Management Console(ENG)

93

* Mozart Management Console 2 — O =

File Window Help

Server Explorer n X

i 266

~ g Server Explarer

vi% 92' 168.1.1 Connect Server
[F] Project
JDme:C &7 Edit Server Connection
[] Triggen (5, Resume Job Scheduler
@ AutoUn |5, Pause Job Scheduler
I3 Downlg
B Svster % Refresh Job Scheduler Status
E gplukad Show System Log
=g Backug
= Monita | Download Database File
Perform Upload Database File
1T Shorte
o Users License Information
Server Information

2. Select the location to save the DB files.

Browse For Folder >

Select a Download Folder

- Desktop ﬁ
s Onelrive - VMS Sclutions
fg WMS Solutions
2 VMS-THL
B This PC
1 Libraries
I:?' Metwork
Control Panel
lal Recycle Bin
GAMS
LingTest
* MOZART Tools W

Make Mew Folder Cancel

3. A progress bar appears while downloading is proceeding. Press [Cancel]
to cancel the download.

MOZART Management Console(ENG)

00 Transfer files =

a

Total files (0/1)

ChWindows\ServiceProfiles\LocalService’\AppData\Reaming\Mozart\ Deployhan

Cancel

4. Press [Done] when the download completes. This message appears
each time a DB file is downloaded. Since there are three DB files, steps 3
and 4 will repeat until all files are downloaded.

et

Donel

How to upload the DB files

1. Right-click the server node from the [Server Explorer] to upload the DB
files to and select [Upload Database File

MOZART Management Console(ENG)

95

* Mozart Management Conscle 2 - [m| x

File Window Help

Server Explorer L X
it 2 & &
w0, 1921610
- Prd Connect Server

w [O| & Edit Server Connection

Resume Job Scheduler

Pause Job Scheduler

<
il
(55.» onl

Refresh Job Scheduler Status
Show System Log

Download Database File
Upload Database File

License Informaticn
Server Information

v (£ =
] Files
Logs
[7] Results
v] LoadTest!
[Files
Logs
[7] Results
v] LoadTest?
] Files
Loas
[7] Results
w] LoadTest3

Filae~

2. Select the DB file to upload from the file explorer.

I
File name: | [Mozart Management Database(DeployManagement.db) (DeployManagement.db)

Mozart Management Database(DeployManagement.db) (DeployManagement.db)
Mozart DeployLogging Database (DeployLogging.db] (DeployLogging.db)
Mozart SchedulerLogging Database (SchedulerLogging.db) (Schedulerlogging.db)

3. In case a DB file already exists in the server, a message asking whether
to overwrite the existing file will appear. Press [Yes] to overwrite the file.
Otherwise, press [Copy and Rename] to save the file without
overwriting.

MOZART Management Console(ENG)

Confirm File Replace e

The folder already contains a file named "DeployManagerment, db’,

Wiould vou like to replace the existing file
Size: 164,33 MB
Date modified: 2017-05-30 09:29:40

with thiz one?

Size: 154,33 MB
Date modified: 2018-05-04 14:42:15

or Copy and Rename as

DeployhManagernent (13.db

Yes Mo Copy &nd Rename Cancel

The logs are constantly saved to the local DB file while
Mozart service is running. In this case, the local DB files
to upload to the server do not contain records since the
date they were downloaded. To avoid overwriting the
existing local DB files, we recommend uploading the DB
files using different names through [Copy And
Rename]. After then, pause the Job Scheduler and
perform migration from the uploaded DB file to the
existing DB file.

4. A progress bar will appear while DB files are uploading. Press [Cancel]
in case canceling the upload is required.

Transfer files >

Total files (0/1)

ChWindows\ServiceProfiles\LocalService\AppData\Reaming'\Mozart\Deployfan

Cancel

MOZART Management Console(ENG) 97

5. A pop-up will appear when the upload completes. Press [OK] to confirm
and finish the upload process.

Done!

How to Register Project

In the previous version of MOZART Management Console, users were
required to create accessible folders through Shortcut in order to upload
Task model and dll files and to access trigger results and logs. From
MOZART Management Console (2.0), creating folders to Shortcut are
unnecessary. When a Project is created, Files/Logs/Result folders are
created automatically. When the Project is mapped to a Job the logs and
trigger results will automatically directed to be stored to the Logs/Results
folders of the corresponding Project. The following describes how to add
Projects through MMC.

Project Registration

1. Right-click on the Server Explorer -> Projects node and select [Add
Project].

MOZART Management Console(ENG)

Server Explorer

&= @ % & &
a g5 server Explorer
4 (3 MMC2_TEST el
4 [[F) Project) '
!._| Coll Add Project L
Files L|Fe
=] Logs L|Fz
[7] Results Lim
a] Fab_Planning
Files

2. Enter the information to Input project name and Description textbox,
and click the [OK] button to save.

o

..:. Add Mew Praject EE@

Input project narne:
by Project
Server folder:

workingFolderfy Project,

Description:

Adding new projecﬂ

Ok l l Cancel

Add New Project Information

« Input project name : Name of the project to be created. A folder
with Project name will be created to Projects/Results/Logs
folders within WorkingDirectory. Project name cannot be edited
after creation.

o Server folder : The project folder to be created in in
[WorkingDirectory]\{Projects/Logs/Results}\. Users cannot edit
this item.

+ Description : Textbox to type in description for the project to be
created. The Description section can be edited through Edit
Project.

MOZART Management Console(ENG)

99

How to Edit , Replicate & Delete
Project

Project Modification

1. Select the Project to be edited among Projects added to Server
Explorer -> Projects. Right-click and select [Edit Project].

MMZ2_TE!
o @ % & & Add | Edit
4 gg Server Explorer
4 (5, MMC2_TEST Drag a col
a Projects LserID
a 2] Calla—Tact
: Edit Project
= Delete Project
[7] Results =
a -] Fab_Planning B
Files
=] Logs
[7] Results

2. Only [Description] can be modified. After editing, click [OK]
button to save.

Duplicating a Project

There are two ways to replicate an existing Project. 1) [Copy] is a
function to create a replica of the project, job, and trigger on the local
server. 2) [Synchronize] is a function to create a replica of the
project, job, and trigger on the remote server. This page instructs
how to use the [Copy] function. To learn how to use [Synchronize],
see here.

1. Right-click a project in server Explorer > projects , and select
[Copy] from the context menu.

MOZART Management Console(ENG)

100

2. On the Duplicate project dialog, enter the name of the replica
and select [OK]. (Default Name: Copy_Project Name)

=1=[7]
pEg

558 Duplicate project

2 3

Enter the name of the new project name:

| Copy_Sim

Cancel

Once the duplication process is completed, you can see the
replication of the project, job, and trigger created with the given

name.

Server Explorer L x

Replica of the Project

0.TestServer/Projects/Copy_Sim/Files x

0.TestServer/Projects/Sim/Files

"~) - = = I_r;\ll -G - - 5 . ra .
] @ @ | B (<)~ () & |ig O Copy_Sim
v g4 Server Explorer ‘ -
v 5 0. TestServer Name Last Update Time Description
v [Proje |] Vms.Planning.dll 2022-08-09 2% 11:56:42
u Copy_sim | |]vms.Planning.pdb 2022-08-09 2% 11:56:42
— Files | | VmsModel.vmodel ~ 2022-08-09 2% 11:56:42
Logs
[7) Results
» =] Edu
» =] Monitor
>] Peg
3 [File
» [=] Sim
]
Replica of Job & Trigger
B8 editJob - o X B84 edit Trigger - b X
Basic Parameters Schedule | TargetJob Fallre Action
You must specify what action this task will perform, Targetjob: Eoeen =
Job name: Sim 'You must specify what arguments this task wil use. Reset tc
Description:
+ 0.Basic
Job Type: [gmodel v o Sorro009 06000
[Disallow Concurrent Execution period 1
- 4 1.SchedOption
Job Setting ApplyRamdomSource
Project : Copy_Sim v ArgFist
| S, hrgsecond
Model file : VmsModel,vmodel v 4 7 - extendedProperties
Model dll file : Vims. Planning.dil v :::x:;ﬁ,';‘;‘
Configuration file : - #daction-excudes/n
#daction-ncludes/in
Log dir : [Copy-Sim = ﬁmnuv:.AdJuﬂ:Mnutes o
Additional run count : [0] ermecrunde s
soverwrteresik
“ 4 « Record10f41 » » W
Cancel Schedule Now oK Cancel

MOZART Management Console(ENG)

101

Deleting Project

1. Select the Project to be deleted among Projects added to the
Server Explorer -> Projects. Right-click and select [Delete
Project].

2. Click [OK] button in the Confirm popup window to delete the
Project, then the Project folder and files selected in
[WorkingDirectory] \ Projects will be deleted.

Confirm @

Do you want to delete project 'Test'?

| Rernowve all history of project

[(0]]l Cancel |

 Remove all history of project : This option is to decide
whether to delete all the histories of the selected Project. If
the checkbox is enabled, files in ChangeSet folders and data
in Deploymanagement.db will be removed when the Project
is deleted.

File Commit and Deploy

Register File

1. In Server Explorer-> Projects node, double-click the Files
folder of the project for registration or select [Open] from the
right-click menu.

2. Select the files and folders to be uploaded by clicking [Add]
button on the top menu. If the file is newly added, "+" is
displayed next to the file. If it is deleted, "-" and if it is
changed, a check mark is displayed as shown below.

MOZART Management Console(ENG) 102

ek - l=s) .@ &4 | senver Test

Marme Last Update Tirne Description
Data 2017-03-27 pM &:32:30
_|Madel vrnodel 2017-03-27 PM &:32:30
| |ServerTest.pdb 2017-03-27 PM &:32:31
& | |[ServerTest.dl 2017-03-27 PM f:32:31

Top Menu Button Description

Add Update || Delete View History

Refresh New Folder Commit Cancel

* Refresh: Refresh button to update Deploy status of files in
Files folder.

e New Folder: New Folder button to create a folder in Files
folder.

e Add: Add button to register/change files/folders in Files
folder. If you click the arrow next to the icon, you can choose
whether to upload the file or folder.

¢ Update: Update button for changing files in Files folder. The
function is the same as Add, but when you select Update,
the selected files are only searched in Explorer.

¢ Delete: Delete button to delete the selected file from the
Files folder.

¢ Commit: Commit button to reflect the above Create Folder /
Add / Update / Delete.

¢ Cancel: Cancel button to cancel all changes in Files folder.

e View History: View History button for viewing all past
changes in the Files folder

MOZART Management Console(ENG) 103

History © Senver Test o= | B E3
Changeset Action User Deployed Time Comment

32 Dreploy 53 2017-03-27 13:32

a0 Deploy 3 2017-04-11 11:47

51 Deploy sa 2017-04-11 12:05

52 MotScheduled 3 0001-01-01 00:00

View History Window

e Changeset : It is the changeset number of the Projects.
Changesets are not managed and created individually by
Projects. (i.e. Project A : Changeset 1, Project B : Changeset
1,..). Regardless of the Projects, if commits are made from
any of the Projects, Changeset number will be increased by
1 from the previous Changeset. (i.e. Project A : Changeset 1,
Project B : Changeset 2,..)

¢ Action : This shows the Commit status.

o Deploy : Committed files have been deployed and saved
to the server.

o NotScheduled : Files are committed and stored in the
Changeset folders, but not deployed to the server yet. .

o Deploy > Rollback : Files are rolled back and cannot be
distributed to the server due to running Job/Trigger. This
happens when committed files are trying to be
distributed when nothing is set on Related Items option
in Deploy Schedule tab while Job/Trigger is still running.
An error message will be written to Comment column
when Deploy > Rollback occurs.

MOZART Management Console(ENG) 104

e User : Shows the user account that performed Commit.

+ Deployed Time : The time when committed files have been
deployed to the server (Format: YYYY-MM-DD hh:mm).

e Comment : Comments left by the user during file commit.
You can modify the comments in the history. Double-click the
row or select a row to modify and select [Detail]. Then
another window will appear with detailed information about
the selected row. Go to the Comment section and modify
your statement. Select [OK] to save the changes and close
the detail view window.

H18 History : BackUpTest - m} x
Changeset 250
Scheduled Information Immediately
Deployed time 6/14/2022 11:47:05 AM
Comment
You can modify your statements through this section)
File name Action File Version Library Version
MakingFolder.exe Add
oK Cancel

File Commit and Deploy

1. When the file registration is completed, click the [HE0|E]
[Commit] button on the top menu. At this point, you can set
the time to distribute the files in the Deploy tab.

2. When the setting is completed, click the [OK] button.

MOZART Management Console(ENG)

105

11 Commit Changes =lfe ==

Project: Server Test By User sa

Files Deploy Schedule
Comment:

Update file |

Narne Directary Description
|| ServerTestpdb Server Test

Commit Changes Dialog

e Files Tab

o Comment : Itis used to create user comments on the
changed point. You can check comments in [View
History].

o Name : File name to be committed.

o Directory : Relative path information for [Project Name]
in [WorkingDirectory]/Projects/path.

e Deploy Schedule Tab

MOZART Management Console(ENG) 106

Cornmit Changes El@

Project: Server Test By User: 5a

Files = Deploy Schedule

@ Update Mow Related Type: |Jub A

Related Items: MONE
Update after specific tirme sated e {)

Kill executing triggers
Mo schedule yet

Cancel

o Update Now : Start the distribution of files from the moment
that you press the [OK] button. If Related Items are specified,
the relevant Job / Trigger will distribute files after execution.
If Related Items is (NONE) and related Job / Trigger is
running, the file distribution is canceled and files are rolled
back

+ Update after specific time : Distribute committed files to the
server at the user-specified date and time. Like Update Now,
if Related Items is (NONE) and related Job / Trigger is
running, the file distribution is canceled and files are rolled
back.

* No schedule yet : This option is selected when the
registration / change files are committed but not deployed to
Server. No schedule yet files can be distributed to the Server
via Update Now or Update after specific time.

+ Related Type : Whether to check the related job or trigger is
terminated when distributing registered / changed files. If
Related Type is set to Job, it checks whether all triggers
connected to the selected Job in the Related Items and
proceeds to the distribution. If set to Trigger, it checks
whether the selected triggers are executed in the Related
Items and proceeds to the distribution.

MOZART Management Console(ENG) 107

+ Related Items : Check whether the registered Job or Trigger
is selected based on the items set in Related Type.

 Kill executing triggers : If the selected Job / Trigger of
Related Type / Related Items is being executed and Kill
executing triggers is checked, the job / trigger is immediately
stopped and distributes files. This option is selected if the
priority of file distribution precedes triggers.

Synchronizing Project Among

Mozart Servers

When creating a failover system for MOZART Server, the project,
job, and the trigger of the backup server have to be the same
from what is in the operation (main) server. In other words, the
procedures and steps took to compose the main server have to
be repeated from the backup server as well to be prepared.
However, when this task is done through human resource only,
this may lead to increasing the risk due to human error and
longtime consumption for preparation.

From 2019.115.000.0 version the feature to support to create the
backup server for failover is included. The functions that could be
used are 1)Replicating the project, job, trigger of the source
server to the target server, 2)synchronizing the source
server to the target server in case changes are made from
the source, and 3) leaving logs for the synchronization
among source and target.

How to Use

MOZART Management Console(ENG) 108

The vModel file or task DLL file can be updated to the operation
server of the MOZART Server. In this case, the updated files
should be applied in case a backup server exists. By using the
synchronization function, the target(backup) server can pull from
the source(operation) server. The following explains the steps on
how to use the synchronization function.

1. Connect to the source server from the server explorer from
MMC.

2. Next, connect to the target server from the server explorer
and then select a project to synchronize from the source
server. (Ex.SimFailover)

* Mozart Management Consale 2

File ‘Wifindow Help

Server Explorer

e @ % & &
~ ze Server Explorer
v |, Failoverserver

w Projects

] SimFailove —
7 TestProjec Edit Project
= Jobs Delete Project
| Triggers Synchronize Project

[} Systern Log

3. Right click on the selected project and select [Synchronize
Project] from the menu.

4. Click [Mapping] button from the synchronize project dialog to
select the source server. In normal cases, when the target
project is created should replication, the source server
should be already selected.

e Source Project : Gets the list of the source server and
the project to synchronize.

e Mapping Triggers : The selected job and trigger to sync,
which was chosen from the [Mappings] of the source

Project .

MOZART Management Console(ENG) 109

Source Project:

Mapping triggers :

Cof g ServerProjectiapDialog [m] X
Select Server:
Options |MainSeNer w
Project:
(® Over| |Sched =-[110hs
ETL 5. 5im
O ol EEE L ATrigger Sim
O Synic
Connect Cancel
Current Changeset: #H8¢ Date synchronized @ A Synchranize
Pending Changeset: ##¥ Date scheduled: ### Status, W

Cancel

5. Once the source server is selected, next select the project to
pull from the project section.

6. When a project is selected, the list of the jobs and the

triggers mapped to the project will appear on the right side
panel. Select the job and the trigger to pull from the source
server.

MOZART Management Console(ENG)

o Overwrite all : Overwrites the existing Job/Trigger,
schedule and the arguments to the ones from the source
server.

e Do not overwrite : Does not perform anything.

e Synchronize all, except for checked items :

Synchronize all except for the selected arguments of the
job and trigger.

110

aes . .
248 Synchronize Project

- O X

Source Project: MainServer@Sirm Mapping

Mappingtriggers: Sim@Trigger_Sim

Cormment:

Options Sync Schedule

® Overwrite all
(C) Do naot overwrite

(O Synchronize all, except far checked kems

Current Changeset: #H# Date synchronized : #e% Cancel
Fending Changeset: #H¢ Date scheduled: #H

Status: HHHE

7. Once the settings for synchronization is completed, next, go
0 sync schedule tab from the Synchronize Project dialog to set
the schedule to start synchronization.

oee . .
2495 Synchronize Project

- O X

Source Project: MainServer@Sim Mapping

Mapping triggers 1 Sim@Trigger_Sim

Cornment:

Options Sync Schedule

(® Update Mow Related Type: | Job >

Related Ikems: MOME, v
(O Update after speific time {)

[kill executing triggers
() Mo schedule vet

Curtent Changeset: 5 Date synchronized : #H

Pending Changeset: #H# Date scheduled: ## Status: HHHE

MOZART Management Console(ENG) 111

8. Click [Synchronize] button to synchronize from the source
server.

9. Once synchronization is performed, you may check the
history of the synchronization among the source and the
target server through syncerojects node in server Explorer Of
the target server.

7 Mozart Management Console 2

File Window Help

Server Explorer Ll LocalServer[SyncProjects X
b 2 &B& Refresh | Cancel

v == Server Explorer

Drag a column header here to group by that column
v 1, LocalServer

« [® Projects Changeset Project Source Project Job Triggers Syne Time Comment
v [] failover]
Files ’ 3 failover MainServer@Sim Sim@Trigger_Sim 201903{13 19:05 [sync]
[7) Results

2] Jobs
| Triggers
[SC_ChangeSet
[Syster Log
g Backup
= Monitor
% Performance
9] Shortcuts

2 Users
&, MainServer

Changeset : The unique identification number or changeset
ID of the synchronization.

Project : The name of the target project that was
synchronized.

Source Project : The name of the source project.

Job Triggers : The name of the job and trigger
synchronized. @ is delimiter for job and trigger. (Ex.
JobName@TriggerName)

Sync Time : The time synchronization was completed.

Comment : The user comment for the synchronization. If
synchronization fails (State : Fail), an error message will be
left automatically.

MOZART Management Console(ENG) 112

Model and Data to Temp Folder

to Run Trigger

This is a guide to run the model of the trigger not from the
project folder, but from a temporary execution folder.

Project Folder (Model Folder)

Project Model

Input Data

Start Trigger
Create temp execution folder
(clone model and input data)
Copies the model by default,
input data selective

A
Project Model Input Deta

Output Data

Run Job

Model zip Folder

model0oeczip

A

Create result zip file

Delete temp execution folder

Temp execution folder per Trigger run

MOZART Management Console(ENG)

113

Argument to Create and Use
Temporary Folder to Run Trigger

The following table lists the extended arguments in MMC to
create a temporary folder containing the vModel file and input
data copied from the rroject folder, and run the Trigger.

Argument to Create and Use Temporary Folder to Run Trigger

Argument DataType Description

Indicates whether to use the temporary folder
#use-run- to run Trigger. (Default: false) The temporar
] boolean gger. () P y
dir folder creates under workingpirectory >

Execution > [Trigger Name] > [Executed Time]

Specifies the number of temporary folders to
create. (Default: 2) When the trigger run
finishes the temporary folder is deleted. The

#max- : . -

cun-dir int value in the argument indicates the number of

- the folders to be kept. (i.e If the value is 2, then
the two temporary folders of the recent
executed trigger is left.

#use- Indicates whether to use the temporary folder

parent- boolean of the reference trigger. (For dependent trigger

path only)

When #use-run-dir = true, a temporary folder is created when the
trigger executes. The location of the temporary folder is as
follows.

Temp execution folder location: WorkingDirectory\Execution\
[Trigger Name]\Temp\[YYYYMMDD-HHmmss-random string]

Note

Please close all temporary folders when the trigger is
executed. Leaving a folder opened may cause the
folder not to be deleted especially when the folder to
be deleted is opened.

=

MOZART Management Console(ENG) 114

https://www.notion.so/use-run-dir-06de0f84a1f14751aed43da1f3fc061b
https://www.notion.so/max-run-dir-87619d7e580d48978377f90043c0e38c
https://www.notion.so/use-parent-path-bac74e8fc9654c09b17211b86dc01d70

How to Use

The arguments can be set from either Job or Trigger setting
window of MMC.

How to Set from Jobs/Triggers

1

Run MozartManagementConsole2.exe. The file is located
in the path where MOZART client is installed (i.e C:\Program
Files (x86)\VMS\Mozart\Server\bin).

Select a server node from Server Explorer. Then, right click
and select [Connect Server].

Type the log-in ID and password to [User ID] and
[Password] box and then click [OK] button to connect to the
server.

Right-click on [Jobs] or [Triggers] node and select [Open]
or double-click [Jobs] or [Triggers] node from Server
Explorer to open the window.

Select a job/trigger from the list and double-click to open
[Edit Job]/[Edit Trigger] dialog.

Go to [Parameters] and scroll down until you see [#use-
run-dir] and [#max-run-dir].

Check [#use-run-dir] to create temporary folder and type a
number to [max-run-dir] box to decide the number of
temporary folders to maintain.

MOZART Management Console(ENG)

115

Edit Trigger
Schedule Target Job Failure Action
Target job: IMainSim. Sim

Y¥ou rmust specify what arguments this task will use.

Reset to defaults

w

4 z - extendedProperties
#daction-excludes
#daction-includes EgpPlan
#daction-excludesfin
#daction-includesfin
#start-time, AdjustMinutes 1]

#use-run-dir v

#maz-run-dir iz -
#overwrite-result

#use-database v

#save-database v

Operation Structure

When #use-run-dir is true the vModel and input vData files in
the rroject folder is copied to the temporary folder of the trigger
when the trigger is executed. The vData files copied to the
temporary folder are the files that are not to be donwloaded from
the database. After the files are copied, the model executes from
the created temporary folder according to the arguments set in
trigger setting. The data to be downloaded from the database is
stored in the input folder of the temporary folder.

Model Folder Exe. Folder - 1
Model Model
Input Input Input ‘& JSecond Copy
Output * Copy UseOldData checked input data.
L 2
Exe. Folder - 2 Exe. Folder - 2 i . Exe. Folder - 2
1 Model , DB 1 Model | Run Model
L) first Copy] -/ Download -
"l gt Input Input _ P input Input
= Copy Model
= Copy local input data erE

(Exclude/in, Include/in)

How to Set Dependent Trigger to
Refer the Temporary Execution
Folder of Parent Trigger

When the option to use the temporary execution folder for the
trigger each trigger will have a dedicated temporary folder of its
own. This is same for the dependent trigger as well. However,

MOZART Management Console(ENG) 116

there are cases where the dependent trigger needs to refer the
execution result from its reference (parent) trigger.

For instance, if the task of the dependent trigger is to save the
result from its parent to the database, then the dependent task
needs to get the data result from the parent.

How to Use & Example

Set #use-parent-path option to true from the trigger settings in
MMC, in order to use the model and data in the temporary
execution folder of the parent trigger. This option is only effective
for dependent trigger only and will not work on independent
triggers.

Edit Job = &) =

Fl
Bi

Basic | Parameters

4 7 - extendedProperties
#daction-excludes
#daction-includes
#daction-excludes/in
#daction-includes/in

#start-time. AdjustMinutes 0

F#use-run-dir v
F#max-run-dir 5

#Foverwrite-result

#use-database v
#save-database

#modelkfile ProjectsfLocaSimtMyModel.vmodel
#Fmodekdl Projects®LocaSimtSite.LSE_Plnning?.dll
#modelconfig

Fexperimant Experiment 1

#db-to-file

#file-to-db

#use-parent-path v

#db-includes
#db-excludes

#file-to-db Argument Example

The following example is a dependent trigger using #file-to-db
argument saving the experiment result of the parent trigger to the
database.

Scenario

MOZART Management Console(ENG)

117

o Trigger A : Main Trigger

o Trigger B : The dependent trigger to save the essential result
data of Trigger A to the database. (Starts task after Trigger A
finishes)

o Trigger C : The dependent trigger to save the monitoring
result data of Trigger A to the database. (Starts task after
Trigger B finishes)

Trigger Settings

1. Set #use-run-dir = true 1O Trigger A,B, and C.

2. Set #file-to-db to Trigger B and C (#save-database Should be
set as true in advance.) 2. Set Trigger B dependent to
Trigger A from Basic, then go to Parameters and set #use-
parent-path = true from Trigger B.

3. Set Trigger C dependent to Trigger B from Basic, then go to
Parameters and set #use-parent-path = true from Trigger C.

4. Run Trigger A and see if Trigger B and Trigger C saves the
result from Trigger A to the database.

Other Remarks

The operation of #use-run-dir and #max-run-dir works differently
depending on the following arguments set in the trigger setting.

o db to file Job : When set true, input data is downloaded to
project folder instead of the temporary folder.

 file to db job : When set 'true’ the output data from rroject
folder is uploaded to database.

MOZART Management Console(ENG) 118

e overwrite job : This argument cannot be used with #use-run-
dir argument. When set true , the model in the recent made
temporary folder is executed and no additional temporary
folder is created

Run Trigger from Another
Domain/Execution DLL Versions

When the version of the MOZART Server is upgraded, the
stability of the Job/Trigger execution from the latest version is not
guaranteed. The stability issue may require operating the
Job/Trigger of the stabled version until the stability of the latest
version is guaranteed.

In MMC, users can set the Job/Trigger to run from different
versions of domain library and execution DLL files other than
from the latest installed version.

The following table shows the name of the extended arguments
and descriptions that you can use from MMC to set the
Job/Trigger to run from different MOZART versions.

Run Trigger from Another Domain/Execution DLL Versions

Argument DataType Description

The path of the domain library and execution
dll files set from Execution Path in MOZART

string Configurator for Server. The input value is the
version number of the assemblies for the
Job/Trigger to refer.

#host-
version

MOZART Management Console(ENG) 119

https://www.notion.so/host-version-61e4739886ad4e6fa4b7e491a666322c

Argument DataType Description

Relative Path: The name of the folder in
WorkingDirectory where the domain library and
execution DLL files are stored. Absolute(Full)
Path: Any location where the domain library
and execution DLL files are stored. The full
path must be typed in.

#host-dir string

How to Use

This section explains on how to use #host-dir and #host-version
arguments in MMC to set the version of domain/execution DLL
files for the Job/Trigger to refer. You can use either one of them.

Edit Job - O X

Basic Parameters

#file-to-db

#db-includes

#db-excludes

#zip v
#zip.Path MainSirn

#zip FileMameP ostFix

#zip FileMarmeTemplate

#zip. UpdateToRecent

Fmare-runs u]

#run-indes

#log-level

#log-dir MainSim

#dataSource-set-defaul: K1=W1;K2=\2
#datasource-set-def ault-exception

#performance-profiling v
#host-dir

#host-version

44 44 4 Record 33 of 33 X

Cancel

In order to use one of these functions, at least two different
versions of domain/execution DLL files should exist in the
machine where MOZART Server is installed.

#host-version

The steps to use #host-version are as follows:

MOZART Management Console(ENG)

120

https://www.notion.so/host-dir-a799bbce0b304605a78b9c7c843110db

1. Run MozartManagementConsole2.exe. The file is located
in the path where MOZART client is installed (i.e C:\Program
Files (x86)\VMS\Mozart\Server\bin).

2. Select a server node from Server Explorer. Then, right-click
and select [Connect Server].

3. Type the log-in ID and password to [User ID] and
[Password] box and then click [OK] button to connect to the
server.

4. Right-click on [Triggers] node and select [Open] or double-
click [Triggers] node from Server Explorer to open
[Triggers] window.

5. Select a trigger from the list and double-click to open [Edit
Trigger] dialog.
6. Go to [Target Job] and scroll down until you see [#host-

version].

7. Select a version to run the Trigger from the drop-down list in
[#host-version].

£22 Edit Trigger - m} X

Schedule Target Iob Failure Action

Target job: VersionChange.VersionChangeTest ~

You must specify what arguments this task will use. Reset to

#db-ncludes

#db-excludes

#zip v
#zip.Use7z

#zip.Path VersionChange
#zip.FileNamePostfic

#zip.FileName Template

#rip.Update ToRecent

#more-runs i}

#run-index

#log-level

#log-dir VersionChange

#dataSource-set-default K1=V1;K2=V2

#datasource-set-default-exception

#performance-profiing ¥

#host-dir

#host-version n
W4« Record 41 of 41 v x

2021.120.2.24
2022.122.0.6187

Schedule Mow 0K Cancel

8. Click [OK] button to save the changes and close the dialog.

MOZART Management Console(ENG) 121

#host-dir: Relative Path
(WorkingDirectory)

The folder that contains the domain library and execution DLL
files need to be placed in WorkingDirectory. Depending on the
MOZART server versions, these files are located in different
paths. The following lists the default path where the files are
located.

e 2019.3.114.1 and below: %ProgramFiles% or
%ProgramFiles(x86)%\VMS\Mozart\Server or
\VMS\Mozart\Server folder in the path assigned during
MOZART server installation.

e 2019.115.000.0 ~ 2019.115.100.0: %ProgramFiles% or
%ProgramFiles(x86)%\VMS\Mozart\Server\Execution\
[Version] or in the \Execution\[Version] folder in the path
assigned during MOZART Configurator for Server
installation.

e 2019.116.000.0 and above: %ProgramFiles% or
%ProgramFiles(x86)%\VMS\Mozart\Server\Execution\
[Version No] or in the \Execution\[Version] folder assigned
from Execution Path: in MOZART Configurator for Server.

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.
2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Click [...] button in [#host-dir] box. Then, select the folder of
the version to host the Job/Trigger execution in Browse For
Folder dialog and click [OK] button.

4. Click [OK] button in Edit Trigger dialog to save the changes
and close the dialog.

#host-dir: Absolute(Full) Path

MOZART Management Console(ENG)

122

When using the absolute path to #host-dir, the specified folder is
searched only in WorkingDirectory. However, when you set the
full path to #host-dir, the folder containing the domain library and
execution DLL files can be located anywhere that you prefer.

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.

2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Type the full path of the folder where the domain library and
execution DLL files are located in [#host-dir] box.

Edit Trigger

Schedule Target Job Failure Action

l= @

Target job: ServerTest - Cracle.ServerTest1

T ‘

You must specify what arguments this task will use,

#file-to-db

#db-inchudes
#db-exchudes

#zip

#zip.Path
#zip.FileMarnePostfix
#zip.FileMameTemplate
#zip. UpdateToRecent
#Mare-runs

#rur-indesx

#log-lewel

#log-dir
#dataSource-set-default
#datasource-set-default-exception
#performance-profiling
#host-dir

#host-version

WO 4 Record 32 of 33k WM

Schedule Mow

Reset to defaults

ServerTest - Oracle

ServerTest - Oracle
K1=V1;K2=Y2

(Ci12019,3.114,2.0]

QK | | Cancel

4. Click [OK] button in Edit Trigger dialog to save the changes

and close the dialog.

Priority

As mentioned above, to run Job/Trigger from a different version
of domain library and execution assemblies, you only need to
configure either #host-version or #host-dir.

MOZART Management Console(ENG)

123

When both #host-dir and #host-version have values, the server
searches for the existence of the folder in the following order.

1. host-version
2. host-dir (Absolute path > WorkingDirectory)

3. The folder with the highest version number in Execution
path.

Let us assume that both values are set in #host-version and
#host-dir. If the folder with the name specified in #host-version
exists, then the Job/Trigger runs hosted by #host-version.
Otherwise, the Job/Trigger runs hosted by #host-dir. If both
folders are not found or no values are set in both #host-version
and #host-dir, then Job/Trigger runs hosted by the folder with the
latest version name in Execution path.

The following example has values set for both #host-version and
#host-dir. The Job/Trigger will run using 2019.115.000.0 version
DLLs if 2019.115.100.0 folder exists in Execution path.

MOZART Management Console(ENG) 124

Edit Trigger — O X

Schedule Target Job Failure Action

Target job: MainSim. Sim ~
‘¥ou rmust specify what arguments this task will use. Reset to defaults

#file-to-db

#db-includes

#db-excludes

#zip v
#zip.Path [4ainSim

#zip.FileMamePaostfix

#zip.FileMameTemplate

#zip.UpdateToRecent

#mnore-runs o

#run-indes:

#log-level

#log-dir IMainSim

#datasource-set-default K1=W1;K2=\2
#datasource-set-default-exception

#performance-profiling ¥
#host-dir Serverll4l

#host-version 2019.115.100.0

Record 1of 34 ¢ o op o=

Schedule Now oK Cancel

Dependent Trigger Example

Introduction

This section shows an example of how to create a DB monitoring
task to monitor the status of master data I/O, how to set a
dependent trigger to link up with the monitoring task, and how
the dependent trigger executes only when the DB 1/0O event
occurs.

When to use Monitoring Trigger

Here are some cases when monitoring triggers can come in
handy.

1. Start simulation or pegging task only when master data is
updated from DB.

2. To start a task only when the succeeding task finishes with
no error.

MOZART Management Console(ENG) 125

Step 1. Adding Monitoring Table

In this example, we are going to add a monitoring table to the
Simulation or Pegging project to write the engine run status to
the DB.

1. Create a table in Output Dataltem in the simulation or
pegging project to write the execution result status of the
model.

MfgModel/Cutputs/...itoring/ResultFlag > JEEEBEedy sl il feelyi{ls)

(v Inheritance

o Description

o Properties DD
MName Froperty Type ey Mull Editor Ca
STATE string E [=
STATE_TIME datetime [l [>
EXCEFTION string = [-

o P4 tring - [[-

2. Add the table to [Monitoring table] in Output persist config.
Adding the table to [Monitoring Table] enables writing
records under any circumstances. For instance, if an error
occurs during execution, the records at that point are lost
and could not be written to the table. However, if a table is
added to [Monitoring Table], the records are written even
though an error occurs during execution. Only one table can
be set as [Monitoring Table].

MOZART Management Console(ENG)

126

Persist Config/Output Config + X

Add + Remove
- Outputs.
SchedOut Persists Name: |Uutnuts
- Monitor Persists Modet [F

- Log Persists
Log performance

Thread count: 1

noling

DE job retry count: 3

Exception Policy
StopAtThrown ~

Menitering table
outputMonitorTable

I Output » SchedOut »i
<Blank> Log » || MonitorTable I

3. Implement a logic to write the records to the table in wain

control > shutbown FEACtion.

// Main > Shutdown &4 3%
public void SHUTDOWN_O(ModelTask task, ref bool handled)
{
//Job =¥ At 7|
MonitorTable mt = new MonitorTable;
mt .VERSION_NO = task.Context.VersionNo;
mt .STATE_TIME = DateTime.Now;
mt.STATE = task.Context.HasErrors ? : "FAIL" : "SUCCESS";
mt .EXCEPTION = task.EXCEPTION.Message;

OutputMart.Instance.MonitorTable.Add(mt);

4. Write a query to save the records to the DB for monitoring.

MfgModel/Cutputs/...sultFlag/Default * > QUETRES MigMedel/Outputs/...itoring/ResultFlag Persist Config/Output Config

View Parent Reset to Parent | Switch type | Query Builder Extract Parameters | Generate Adapter Populate Commands Test Values

B CommandType |Text » | DataSource |- - Bind Table

=) Default 1 INSERT INTO
L.Cmdl MZT_FLAG

[

STATE,
STATE_TIME,
EXEPTION)
VALUES
(@STATE, @STATE_TIME, @EXEPTION)

[N T, R ST

Step 2. Creating a Monitoring
Task

MOZART Management Console(ENG) 127

Next, we are going to create a monitoring task to monitor the DB
and execute the dependent trigger when state is "SUCCESS".
In this example, you can learn how returnifrtrue execution type
operates and how wmodelcontext.result IS used to determine the
condition to execute the dependent trigger.

1. Create a Mozart project for the monitoring task. Choose
either Basic(SeePlan) or the domain library used for your
system.

2. Add a vmodel and a custom model, then save the project.

3. Add a data source, then add a connection string to the data
source to get connected to the DB.

4. Add a table to [Inputs] and define the columns as same as
the monitoring table in the DB.

L Jal» | %
Marne Froperty Type Key MNull Editor Hidder Caption

[3 VERSION_NO string
STATE_TIME DateTime
EXCEPTION string

STATE string

ogjgoono
O E|E EE
ogjgono

Lo RO RS e

5. Add two DataActions to the input table. First, add a
DataAction to run secect query and another DataAction to
run uvepate query. Set seLect DataAction as the active
action.

MOZART Management Console(ENG)

128

Mozart Explorer
w|ee|2 ||
v MonitorLog
v =] Monitoring
il Arguments
i Database
v [} Inputs
~ || Monitor
v [=| MonitorTable
/0] Select

4] Update

Select query example

| DataSource |- | [Bind Table

= L] CommandType | Text
- Select SELECT
icmdt A.VERSION_NO,
A.STATE_TIME,
A.EXCEPTION,
A.STATE
FROM |
M0Z_MONITOR_TABLE A
[] Activate
DataSource 100%
FabDB N
Name Size DbType Directicn Precisicn Scale SourceVersion
-l [t 4| CommandType |Text ~| DataSource |- | [Bind Table
= Update UPDATE
L. cmd1 MDZ_MONITOR_TABLE A
SET
A.VERSION_NO-@VERSION_NO,
TIME,
[Activate
DataSource 100%
FabDB -
Size DbType Direction Precision Scale SourceVersion SourceColumn
» el so Ansistring |~ |Input ~| lo | current v
@STATETIME |0 DateTime |~ |Input ~ 0 Current ¥
@EXCEPTION | 2147483647 |AnsiString | |Input ~| 0 Current ~|
@STATE 50 Ansistring | |Input & 0 Current &

6. Implement a code to check the monitoring table status and to

change the STATE t0 string.empty When srate is
"SUCCESS". This is to avoid the monitoring task returning

true all the time. Also, implement a logic to forcefully run

UPDATE QUErY USINg InputAccessHelper class. To use

InputAccessHelper , YOU must add mozart.Task.model tO the

MOZART Management Console(ENG)

129

[References] of your project. The following code is an
example, you can implement the following code to either
[Main >Run] or [Custom] > [Execute].

using Mozart.Task.Model;
//Implement logic to either Main > Run or Custom Execute FEAc
tion.
public void MONITORING(ModelContext context, ref bool handle
d)
{

var info = InputMart.Instance.MonitorTable.Rows.FirstOrDe
fault();

//Load data from Input table and check whether STATE = SU
CESS.
// If STATE = SUCCESS, empty STATE, update the new data to
DB and set the value of context.Result =true so the dependent
trigger can execute.
if(info!= null && info.STATE == "SUCCESS")

{

info.STATE = string.Empty;
info.STATE_TIME = DateTime.Now;

//Load the model so we can select the DataAction to e
xecute. By this way we can choose when and which query to run
after Input Persist and before Output Persist.

var dir = Path.Combine(context.ModelDirectory, contex
t.VModelName + ".vmodel");

var model = Mozart.Task.Model.ModelEngine.Load(dir);

var source = new MonitorTable[] {info};
var result = InputAccessHelper.Save<MonitorTable>(mod
el, "MonitorTable", "Update", source);

//result represents the number of rows effected. Sinc
e there will be only one row in the table, set context.Result
true when result is bigger than 0. The data type of contex
t.Result is an object, so basically the default value will al
ways be false.
if(result > 0)
context.Result = true;

Step 3. Setting Monitoring
Trigger

MOZART Management Console(ENG)

130

For the third step, we are going to create a Project, Job, and
Trigger to perform the monitoring task. The following figure
describes the role of the monitoring task and how it operates.
The monitoring task will run every minute and check whether the
table has been updated or not. Once updated, the monitoring
task passes the result to the dependent trigger. If the result is
true , the dependent trigger executes. Otherwise, faise which
will not execute the dependent trigger.

Monitoring Task Engine Task

DB Server Task Server

Check table update flag
Frequency : 1 minute

|y

+) v —
Monitoring Task
! Run ifTrue
' flag update confirmed
v

iy

Model_Task

|

1. Run MMC and connect to the server to deploy the vmodel
and dll files.

2. Open the context menu by right-clicking the [Projects] node
from Server Explorer. Then, select [Add Project] and create
a new project.

3. Upload the vmodel and dll files for the monitoring task to the
Project and proceed to the next step by pressing [Commit]
from the upper menu.

4. Wait until all files are deployed. Once finished, move to
[Jobs] node and add a Job.

5. From the [Basic] tab, select the Project, model file, and
model dll file.

6. Move to [Parameters] tab, from here make sure #use-
database and #save-database is activated.

MOZART Management Console(ENG) 131

10.

11.

12.

Once all settings are done, move to [Triggers] node and add
a Trigger.

From the [Schedule] tab, go to [Settings] and select
[Simple] from the option.

Configure the date and time from [Start] when to start the
task.

Set the time interval from [Recur every:]. We recommend
setting it to 1 minute.

Set [Repeat count:] to -1 to make the loop infinite.

Click [OK] and confirm the changes.

Step 4. Setting Dependent
Trigger

For the final step, we are going to set the dependent trigger. A
dependent trigger cannot start itself and has to refer to a
succeeding trigger to start. In this example, we are going to set
the execution type of the dependent trigger as ReturnifTrue,
meaning the dependent trigger can only start when the
succeeding trigger passes true .

1

If you need to add a new Project, Job, and Trigger, follow the
steps from 1 to 5 in Step 3. Setting_Monitoring_Trigger.

From the [Schedule] tab, go to [Settings] and select
[Dependent] from the option.

Next, select the monitoring task trigger from [Referred
Trigger].

Select ReturnlfTrue from [Execution type].

Give a specific delay time to start the trigger from
[Execution delay]. The default delay time is 3 seconds.

Once all settings are complete, press [OK] and save the
changes.

MOZART Management Console(ENG)

132

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#001e396f684b46fd8c766042128e4991

B35 New Trigger - o x

Schedule = TargetJob = Faiure Action

Trigger name: |Backup_SimuIati0n |
Category: | |
Description:

Settings

O One Time Sttt 20181211 @+ |[2= 40001 3] | Settonow

O simple [Expire: 2018-12-11 o= 4:00:01 &

O Daily

O weekly

0O Monthly Referred Trigger: Menitoring o

® Dependent Execution type: ReturnifTrue v

Execution delay: 00:00:03

Advanced Settings
[Priority: o [Retry Interval: 00:00:00
[] Stop task if & runs longer than: 00:00:00 Retry Count: 07

Enabled
[Trace

Schedule Mow OK Cancel

Monitoring

In Monitoring, you can check the execution status of Trigger in
MMC, CPU / Memory usage status of target server that performs
Trigger, log for each Trigger, and execution time per Task.

When MOZART Server is installed, Monitor node is created on
the target server in Server Explorer. By default, all view that can
check the latest status of triggers and error view to check error
history is created as Child node. In order to monitor specific
triggers, users can add views directly and check the monitoring
history of each triggers. The following descriptions are about the
basic interfaces and functions of Monitoring.

MOZART Management Console(ENG) 133

Nodes

A description of Monitor node in Server Explorer.

o All : If the registered Trigger is executed once, a history will
be saved in All View. In All, the most recent information of
the target trigger is only displayed. When Trigger A is
executed once at 9 o'clock and executed at 10 o'clock again,
All displays information about Trigger A performed at 10
o'clock.

o Errors : It displays the execution error history information of
Trigger. While the most recent information of the target
trigger is only shown in All, the target trigger is recorded
every time an error occurs in Errors. Errors allows you to set
the period that users want to view records.

Search Option: 30 days | Query

Scheduled start End Elapse status Result. Message

r2017-050219:23:16 2017-05-02 19:57:09 2017-05-02 19:56:10 00:01:01 & Complete FAL System.I0.10Bxc
2017-05:02 19:11:16 2017-05-02 19:55:48 | 2017-05-02 19:56:40_ 00:00:52 & Complete | FAL System.10.I0Bxc
20170502 18:56:16 2017-05-02 19:53:22 2017-05-02 19:54:11 00:00:49
2017-05:02 18:53:16 2017-05-02 19:53:21 | 2017-05-02 19:54:08 00:00:47
2017-05:02 18:48:16 2017-05-02 19:53:10 2017-05-02 19:53:27_00:00:17
2017-05.02 18:47:16 2017-05-02 19:52:13 2017-05-02 19:53:16 00:01:03 System.I0.10Bxc
20170502 18:46:16 | 2017-05-02 19:52:09 2017-05-02 19:53:16 00:01:07 System.10.10Bxc
2017-0502 18:45:16 2017-05-02 19:52:05 | 2017-05-02 19:53:16 _00:01:11 o System.I0.10Bxc
2017-05.02 18:44:16 2017-05-02 19:52:04 2017-05-02 19:53:16 00:01:12 & Complete FALL System.10.I0Bxc
2017-05-02 18:43:16 2017-05-02 19:40:05 2017-05-02 19:53:1600:13:11 & Complete FAL System.10.I0Bxc
ontor | 2017-05-02 18:41:16 2017-05-02 19:40:03 2017-05-02 18:53:16 00:13:13 & Complete | FAL System.I0.I0Exception
2017-05:02 18:40:16 2017-05-02 19:40:02 2017-05-02 19:53:16 00:13:14 Complete FAL System.10.I0Bxc
2017-05-02 18:38:16 2017-05-02 19:39:27 2017-05-02 19:53:16 00:13:49 & Complete | FAL System.10.I0Bxc
2017-05.02 18:39:16 2017-05-02 19:39:27 2017-05-02 19:53:16 00:13:49 System.I0.10Bxc
2017-05:02 18:33:16 2017-05-02 19:39:26 | 2017-05-02 19:53:16 00:13:50 System.10.I0Bxc
2017-05:02 18:34:16 2017-05-02 19:39:26 2017-05-02 19:53:16_ 00:13:50 System.10.10Bxc
2017-05.02 18:36:16 2017-05-02 19:39:26 2017-05-02 19:53:16_ 00:13:50 System.I0.10Bxc
20170502 18:32:16 | 2017-05-02 18:42:12 2017-05-02 19:38:27 00:56:15 System.10.10Bxc
2017.05:02 18:29:16 2017-05-02 18:42:11 2017-05-02 19:38:2700:56:16 System.I0.10Bxc
2017-05.02 18:27:16 2017-05-02 18:42:10 | 2017-05-02 19:38:27 00:56:17 & Complete FAL System.10.I0Bxc
20170502 18:24:16 2017-05-02 18:42:02 | 2017-05-02 19:38:27 00:56:25 & Complete FAIL System.10.I0Bxc

e
System.10.10Exc:

o User-Defined View : A View users added. A user-defined
view can check the monitoring status of all the execution
history of the trigger selected by the user. The list is output in
10 units according to the activated window size by paging
method. Please refer to Monitoring_View Registration /
Modification for adding user View.

Monitoring Table

MOZART Management Console(ENG) 134

The following describes the status information table of Trigger
which is the main section in Monitoring Ul.

o TriggerName : The name of the target trigger registered in
Trigger.

» Scheduled : Displays the time when the target trigger is
scheduled to run.

« Start : Displays the time at which the target Trigger actually
started to run.

* End : Displays the target trigger is ended.
o Elapse : Displays the total elapsed time of trigger execution.
o Status : Displays the current status of the target trigger.

o @Run : Target Trigger is currently running.

o @cComplete : Target Trigger has successfully
completed with no errors.

o Aborted : Target Trigger has been stopped by force.

o @cComplete : Target Trigger has ended abnormally due
to an error.

e Result : Displays the result of Trigger execution. Only when
the status of the target Trigger is Complete, it is recorded.

o SUCCESS: SUCCESS is recorded when the target
trigger finishes normally.

o FAIL: If the target trigger is abnormally terminated due to
an error during execution, FAIL is recorded. (The aborted
status is not recorded in Result when Trigger is forcibly
terminated by the user.)

e Message : This column records an error message when an
error occurs during the execution of the Trigger.

Top Menu Bar

MOZART Management Console(ENG)

135

o Stop Trigger : This button is used to forcibly terminate the
running Trigger. If the trigger is terminated by “Stop Trigger”
in Monitoring or “Stop task if it runs longer” in Trigger, Trigger
is terminated and the status turns into Aborted . If the
trigger is terminated by “Stop Trigger” in Monitoring or “Stop
task if it runs longer” in Trigger(Trigger Setting), it can also
be changed as Complete (FAIL) according to the thread.

* Auto Refresh Interval : Set the time interval for updating the
status of Monitoring Table.

o Normal : This is the default setting. Updates Monitoring
table information every 30 seconds.

o High : Updates Monitoring table information every 10
seconds.

o Low : Updates Monitoring table information every 60
seconds.

o Pause : Does not update Monitoring table information as
long as there is no user intervention.

e Query : Itis used in Errors or a custom view. Enter the
period to be searched in Search Option, then it displays the
monitoring information for the period when executing the

query.

Performance Trend

In Performance Trend, only the $model and $cola Job Types are
analyzed. In the Performance Trend graph of the Monitor, the
base line is drawn based on the start of the selected target
triggers and the CPU / Memory usage of the Server Machine
within 10 minutes before and after the base line and the number
of running triggers at that time are displayed. The Trigger's Count
is calculated by not only the Trigger you selected but it also
includes other triggers that were running at that time. If a user
views the Trigger A and Trigger B is running at the time, the
Trigger's count will be 2 in the Performance Trend.

MOZART Management Console(ENG) 136

CPU / Memory usage shown in Performance Trend includes

CPU / Memory used by other processes besides Trigger (Mozart
Agent). The dashed lines in the Performance Trend graph means
the average CPU / Memory usage of the Server Machine and the

solid lines indicate the actual usage of the time. The gray area
means the number of triggers at that time. You can check the
detailed information in Performance Trend graph when mouse

over the graph.

Note

K

Performance Trend aggregate performances every 1
minute. If Trigger runs shorter than 1 minute, it could

bypass the aggregation interval and may not be shown

in the trend. (Performance, Count)

Log Files

In Log Files, you can look up the history log file of the selected
Trigger in Monitoring. You can open the log file directly by
double-clicking the mouse or download the log file locally through
the right-click menu. You can open the folder tab where the log
file is located through the Open Folder button. Like Triggers, Log
Files in Monitoring displays the log files for the last 10 Triggers.

Log Files
Open Folder

R x

MName Date

| |task-TSK-20170504-134752.log 2017-05-04 13:48:13
|| persists-TSK-20170504-134752.log 2017-05-04 13:48:12
| |task-TSK-20170504-132752.log 2017-05-04 13:28:00

Size
1kb
138 bytes
1kb

Attributes
a3
a3
A

Trigger Execution Log

MOZART Management Console(ENG)

137

Trigger Execution Log shows you the execution elapsed time for
each phase of the selected trigger. To record the Trigger
Execution Log in Monitoring, the value of #performance-profiling
should be true.

o PRE_DOWNLOAD : Displays the total elapsed time
downloading the data from DB during the pre-loading phase.

e PRE PERSIST IN : Displays the total elapsed time loading
the pre-downloaded data during the pre-loading phase.

« DOWNLOAD : Displays the total elapsed time downloading
data from DB during task execution.

o PERSIST_IN : Displays the total elapsed time loading input
data during task execution.

 ENGINE_RUN : Displays the total elapsed time of the
module (Pegging, Simulation, CBS, etc) run.

 PERSIST_OUT : Displays the total elapsed time creating
output data file during task execution.

o« SAVE_DB : Displays the total elapsed time uploading the
result data to the target DB during task execution.

Error Message

The Error Message records a detailed message about an error
when the executed Trigger is abnormally terminated due to an
error.

You can copy Error Message to the clipboard or check detailed
error message.

Error Message:

System.MNulReferenceException: M H EHZJF WH S AABHAZ SECIE] W24 ICH -
2|#: Fab.Planning.MonitorLogger.Write(String state) LMY D:¥W TestProjectMicron.Fab TestWFab.PlanningWMy
MethodsWlLogger®MonitorLogger.cs: & 23
2|&]: Fab.Planning.Logic.Main.PROGRESS_REPORTO({ModelContext context, String stage, Boolean& handled) IHY D:

Copy to clipboard || Details

MOZART Management Console(ENG) 138

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#dadfb6f95db64c3c92fe5d68c9ca9698

Error Notification

Mozart Management Console (2.0) not only records logs in the
Errors view when an error occurs during the execution of the

engine but also notifies the user that an error has occurred.

Trigger is failed.

TriggerName:

Dependent
ScheduledTime:2017-03-28 3:41:54

Note

ax

up only when the trigger error occurs during RUN
state. No notification will be shown when the trigger
has encountered an error as soon as its been

executed.

Setting Log Preservation Period

The period to preserve the trigger execution, trigger run time and

performance logs from MMC. Log Options menu appears by
clicking the right-button of the mouse from the Monitor node.

LI;-] Mnnitn:;
[%=| Perform Add View
[EI SI-“:'m:L| Log Options ||

() SyncPil

60 days are set as default. The period can be modified in days.

MOZART Management Console(ENG)

139

Log Options — >
Max Archive Days Setting

Performance: k0
Trigger Execution: |60 =

Trigger RunTime: 60

QK Cancel

How to Use Monitoring View

Monitoring View Registration

1. In Server Explorer, select a sever to register Monitoring View.

2. Right-click on the Monitoring node of the target server and
select [Add View].

3. In the Add View Dialog, enter a name for the View Name and
check the checkbox for the trigger you want to monitor.
(Multiple choices available)

Add View [
Wiew MNarne: Pl
Target Triggers:
m Mame Description
Colabaration
b Failure
Fab
Dependett
Fab3
DataBackup
Test
ServerTestl
o]] | Cancel

4. Click [OK] button to complete.

MOZART Management Console(ENG)

140

Monitoring View Modification

1. In Server Explorer, select the target server for the View
modification.

2. Select the view you want to modify from the Monitoring node
of the target server, right-click and select [Edit View].
(Predefined views such as All and Errors cannot be
modified.)

3. Click [OK] button to complete.

Delete Monitoring View

1. In Server Explorer, select the target server to delete a view.

2. Select the view you want to delete from the Monitoring node
of the target server, right-click and select [Delete View].

3. Click the [Yes (Y)] button in the pop-up window to remove
the target view.

Data Pre-loading

When user sees execution structure of MOZART Main Task
(refer to Main Control), Input Data goes through two phases to
download and load data as shown in the following figure.

s TS TTTTTTTTTTTI TS ~ LTI T ~
vy '
' Preloading data L Input data 1
Preloading data o Data . ' Module
— —_— Loading —

i
1
! —_ Loadin
! Download J Download ! Run
1 (InputMart) (InputMart)

1

MOZART Management Console(ENG) 141

During Pre-Loading phase, Data is loaded for the first time.
Then, during the main Data loading, the pre-loaded data is used
to write codes like downloading specific data selectively or
deciding whether a specific Module or Logic is executed or not.
The following shows how to configure Pre-loading and its
example.

Configuring Pre-Loading

1. Register Input Dataltem that should be pre-loaded to
"Preloading" group of Input Persist Config node. The
following figure shows an Input Dataltem that is registered in
Preloading group after its creation.

MRl Persist Config/Input Config < [R[HeEiia e iR

zlee|zld - Add - Remove
a [0 SimpleMfg = Inputs
a4 = MigModel 5.+ Preloading * Name: RunCondition
> [l Arguments RunCondition Model: |+
» (] Database . BOP
4 [hInputs m- Simulation 7 Enable
[jeoP - Pegging

4 [[preLoading HaHa Persists

[£=| RunCondition
» | Pegging
> | Simulation | Executing action:

V] On after load item:

|GnAﬂerLDad_RuﬂCDﬂdltmn

P’j C:tcputi |GnAmnﬂ_RuﬂCDﬂd\tmn
4 | g Persist Config
£ Input Config
£7], Qutput Config
[SeePlan Config Use temporary context
& Main
[E] My Objects
[E% My Metheds
¥ Pegging

V] Log performance

2. For the item that is the target of pre-loading, it is possible to
write Persist handler like the above figure.

Query Arguments Configuration
Example

This example shows the way to configure Arguments used in
Input Data Query through Pre-loading.

MOZART Management Console(ENG) 142

1. Define runcondition schema and DataAction like the
following figure.

MfgModel/Inputs/...ding/RunCendition > RESEEEE]ilelilalalN K@yl

DispatcherCont

0 Inheritance

€ Description

@ Properties

Marme ProperyType key Mull Editor Car
COND_NAME |string [-
COND_VALUE | string O v

[string O -

2. Register runcondition to Preloading Group and write Handler
as the sample shown below.

4 [[f|PreLoading
4 = RunCondition
L[] Default
“% OnAfterLoad
% OnAction
» [Pegging
& [Simulation
[T, Outputs
sersist Config
[k Input Config
[, Output Cenfig
seePlan Config
vain
Wy Objects
Wy Methods

122
123
24
n25
126
nan
n2s
129
e
731

132
FEE]
RED
135
026
pEY

EL}

2B

ame="context" (>

E public void OnAction_RunCondition(/PersistContext context)

it (InputMart.Instance. RunCondition. Rows. Count > ©)

var args = new Dictionary<string, object>();
toreach (RunCondition arg in InputMart. instance. Runcondition. Rows)

args. Add(arg. COND_NAME, arg.COND_VALUE),

context. ModelContext. QueryArgs = args,

3. You can see that the data of runcondition is downloaded.

Open Schema Open Action

In/PreLoading/RunCondition *

Test Walues Query & Save

° Description

Drag a column header here to group by that column

COND_MNAME COND_VALUE
¥
SCENARIO_ID 5-15021
TARGET_LIME LIME1,LINEZ2
b {

MOZART Management Console(ENG)

143

4. The first Dataltem loaded from this example is procsteps .
The code example below is the Action Handler function of
procsteps and shows that the above configuration's result
was saved.

Persistinputs.cs & Mfghodel/Inputs/.._ding/RunCondition Persist Config/Input Config X

Add = Remove

= Inputs
B* Preloading * Name: ProcSteps
.. RunCondition Model
- BOP
™ DrocSteps
: Enable

- Prp

. Process

- Product

- StdStep

- ProductRoute

[T] On after load item:

Executing action:

----- config
- Simulation [DnAction_TestiE
(- Pegging
.. HaHa Persists Log performance

[F] Use temporary context

¢param name="context
public void OnAction__Test2(IPersistContext context)
it (context ModelContext QueryArgs = null)
{
T context.ModelContext.Queryargs Count = 2

« (new System.Collecticns.Generic.Mscerlib_DicticnaryDebugView-string,chject=(cor {{SCENARIO ID, 5-150217}
W (new System.Collections.Generic.Mscorlib_DicticnaryDebugView<string,object=(cor {[TARGET_LINE, LINEL,LINE2]}

trvmanh (ctrina o in aas)

Main Control

MOZART's Model is operated by Model Task provided from
Library. Main Control is the FEComponent for configuring

parameters to let Model Task operate Model and supporting
to process data by user after Model operation is completed.

Model Task sets Task operation's start/end time, Simulation
Version, and other information used in Simulation Model

MOZART Management Console(ENG) 144

during Setup phase. Model execution, in general, is
designed to process Execution Modules registered through
MOZART IDE in a sequential order. The basic Execution
Modules are Pegging & Loading Simulation Modules that are
used to run Forward, Backward Planning. Basically, it is set
for Pegging to run first and then Simulation.

MainModule Control Structure (1/2)

(s)— 1 BeginSetup
[
SetupVersion

[
SetupPeriod

[
SetupLog

[
SetupQueryArgs
¥

EndSetup

MainModule Control Structure (2/2)

Onlnitialize

v Default run definition
Run |

CanExecuteModule '

:.eL

IsContinueExecution » OnBeginModule

l' OnEndModule

— OnDone

[ShutDown

ProgressReport

Setup Phase

MOZART Management Console(ENG) 145

A set of FEAction is provided to adjust the entire task
performance flow during Setup Phase. Designating a target
Model to be executed and adjusting sequence can be done
through here.

BeginSetup: Before Setup is handled, Logic
creating/updating information to run Model are
implemented in this action.

SetupVersion: This Action is called at the point Setup is
executed. Plan Version can be configured by User
definition.

SetupPeriod: This Action is called at the point Setup is
executed. Plan Duration can be configured by User
definition.

SetupLog: Setup logs can be implemented according to
User definition.

SetupQueryArgs : Arguments to be used when
executing DataAction for In/Output are configured.

EndSetup: This Action is called at the point when Setup
is completed. If any additional configuration other than
normal Setup handling logic is required, this FEAction is
used to implement the configuration.

Input Data Download &
Loading Phase

Through this phase, data is downloaded(query) from Data
Source, saves it as a file and loads the data onto InputMart
or TempMart in Memory for executing Module. In this phase,
there is no Event in that any special user-defined logic can
be executed.

MOZART Management Console(ENG)

146

Preloading : Input File Download and Data Loading is
performed for the data set as Pre-loading in Input Data. Pre-
loading is mainly used to perform Main Input Data Loading or
to load condition information from Data Source for controlling
the entire execution.

Main Input loading : Input File Download and Data Loading
is performed for the data that is not set as Pre-loading in
Input Data.

Execute Phase

This Phase controls executions in MOZART. Each execution
Module is initialized through this phase and event handling at
the end of operation can be customized.

1. Onlinitialize : OnlInitialize is called after Input Data
Loading is completed, but before Task is executed. The
loaded data is primarily processed here and can be used
to make additional Input Data.

2. Run : Run is the Main function and the entry point to
perform Task. Definition in Run is bond to execute all
Modules included in Model in Pegging, Simulation order.
The default Definition can be used when Pegging,
Simulation Module is added. Otherwise, if the registered
Module is going to be used for arbitrary purpose, Run
function needs to be redefined.

Module Execution Control through Run Function

// Example. Redefinition of Run function after CustomTes
t Module is added.

// In general, Custom Module has higher priority than Si
mulation.

// In case Module is required to re-process Simulation r
esult, the following lines should be included.

public void RUN1(ModelContext context, ref bool handled)

{

MOZART Management Console(ENG) 147

MOZART Management Console(ENG)

// Refer Simulation Module by Module name (Module na
me is same as the name shown through Tree.)

var module = context.GetExecutionModule("Schedule");

if (module !=null)

{
module.Execute(context) ;
if (context.HasErrors)
return;
}

// Refer to Custom Module
module = context.GetExecutionModule("CustomTest");
if (module != null)

{
module.Execute(context);
if (context.HasErrors)
return;
}

// Sample code to run Custom Module
public void EXECUTEO@(ModelContext context, ref bool hand
led)
{
// Simple Log output sample
Logger.MonitorInfo("This is Custom Module Test!");
// Logic can be implemented using InputMart, OutputM
art Data.

}

The result below shows the Custom Module execution
log after Simulation is executed.

Cldpsel 1M — U U DS U |

Simulation-Init... 2015-07-22 20:35:32

> Elapsed Time = 00:00:00.8080581

Simulation-Run .. 2015-07-22 20:35:33
shift changed at 20150601 060000 00:00:00.0340996
shift changed at 20150601 140000 00:00:00.7151278
shift changed at 20150601 220000 00:00:00.1676605
shift changed at 20150602 060000 00:00:00.1513568

> Elapsed Time = 00:00:01.20993%5
Disposing .. 2015-07-22 20:35:40
Elapsed Time = 00:00:00.07109229

Done ...2015-07-22 20:35:40

RUN_DEF Sample Code

public virtual void RUN_DEF(ModelContext context, ref bo
ol handled)

{

var handler TaskControl.Instance;

var modules = context.GetOrderedExecutionModules().T
oArray();

Logger.StartHandler (context.GetLog(MConstants.Logger
Execution));

148

try

{
int count = modules.Length;
for (int 1 = 0; i < count; i++)
{
var module = modules[i];
if (!'handler.CanExecute(module, context))
continue;
if ('handler.IsContinueExecution(module, con
text))
break;
Logger.MonitorInfo(module.Name + " Start.");
this.lastResult = module.Execute(context);
if (context.HasErrors)
break;
Logger.MonitorInfo(module.Name + " End.");
}
}
finally
{
Logger.EndHandler();
}

3. CanExecuteModule : CanExecuteModule is used in
default Definition of Run function. The function is called
for each Module registered in MOZART project. Logic
are implemented to decide whether this module should
be executed or not. For example, if only Pegging Module
needs to be performed although both Pegging and
Simulation modules are applied, it is possible to execute
Pegging module only by setting the return result of
Simulation Module to false.

4. IsContinueExecution : IsContinueExecution is used in
default Definition of Run function. This function decides
whether to run/stop Module performance. If a return
value is false, Module's execution is stopped. And this
doesn't matter how many Modules are left to be
executed.

5. OnBeginModule : OnBeginModule is used in default
Definition of Run function. This function is called at the
initialization of the Execution Module in order to
implement user-defined logic. Since this function is
called at the beginning of execution by all execution

MOZART Management Console(ENG) 149

Modules, logic should be differently implemented
according to the Model.

OnEndModule : OnEndModule is used in default
Definition of Run function. This function is called at the
end of Module execution in order to implement user-
defined logic. Since this function is called at the end of
execution by all execution Modules, logic should be
differently implemented according to the Model.
OnEndModule is also called when error occurs during
Module execution. Loading task for these errors can be
separately performed.

OnDone : OnDone is called when execution of all
Modules in the Project is finished. Additional processing
for the result can be inserted at the time moment before
the result is originally written.

End Phase

Save output file & Save DB : In End Phase, output data in
Memory(OutputMart) is written into Output file. And among
these data, some data items are updated in DB if required.

1. Shutdown: Shutdown is used for any future works after

MOZART Management Console(ENG)

Model execution is completely concluded. Basically it is
used to leave logs for errors occurred during Model task
execution. When Monitoring table of Output Persist
Config is configured, codes like the following example
can be written.

Write Task Result Log Sample

Configure Outputs that saves the final result onto
Monitoring Table from [Persist Config > Output
Config]. Then, implement Shutdown function like the

150

MOZART Management Console(ENG)

following. If problems are not considered with regard to
saving the final result, the corresponding data can be
written through OnDone or OnEndModule. However, if
Monitoring table is configured, the results will be saved
to a file or to DB after Shutdown.

public void SHUTDOWN_O(ModelTask task, ref bool handled)

{
// If Output DataItem name is ResultFlag

ResultFlag result = new ResultFlag() ;
result.STATE_TIME = DateTime.Now ;
result.STATE = task.HasError ? "FAIL" : "SUCCESS" ;

// Add values to the corresponding result table.
OutputMart.Instance.ResultFlag.Add(result) ;

Save Monitoring Result(with final result) : Saves the final
execution result of Task. The value of Monitoring Table
that is configured in Output Persist Config is saved.

ProgressReport: ProgressReport is called on each
start/end of reading DB, lading DB, executing Module,
and writing DB. 'Stage' is the value to identify each
execution point of the Action and ProgressReport Action
is called at the point of each 'Stage'.

'Stage' Input Value of ProgressReport
* PreDownload_Start : Read target Pre-loading DB

¢ PreDownload_End : End target Pre-loading DB
read.

+ PreLoading_Start : Load target Pre-loading data.

* PreLoading_End : End target Pre-loading data
loading

¢ AutoDownload_Start : Read DB
¢ AutoDownload_End : End reading DB
+ DataLoading_Start : Load data

« DatalLoading_End : End loading data

151

¢ {Module(Pegging/Simulation/Custom) Name}
Module_Start : Run Module

¢ {Module(Pegging/Simulation/Custom) Name}
Module_End : End Module

o SaveOutput_Start : Write data

o SaveOutput_End : End writing data

¢ CommitOutput_Start : Write DB

¢ CommitOutput_End : End writing data

¢ SaveMonitoringOutput_Start : Write Monitoring
Table Data

e SaveMonitoringOutput_End : End writing
Monitoring Table Data

¢« CommitMonitoringOutput_Start : Write Monitoring
Table DB

¢ CommitMonitoringOutput_End : End writing
Monitoring Table DB

The followings describes the reference items of
ModelContext class that are basic classes able to be
used while user-defined logic is implemented in Main
Control

ModelContext Class

Main Property & Method

MOZART Management Console(ENG)

StartTime : Start time of Model execution (time set in
start-time of Arguments)

EndTime : End time of Model execution (start-time +
period of Arguments)

Arguments : Collection of Input Arguments value

QueryArgs : Collection of Arguments values used from
DataAction for Input, Output persist. Input, Output persist

Version : Versioninfo object of execution version.

152

e VersionNo : Execution version number string (Name,
start time, VersionNom, etc.)

e VModelName : Name of execution VModel
e HasError : Check Model error

o LastException : Error (Exception) information when
error occurred from Model

e Result : Task result of object form. Writes results of
tasks refereed when Dependent Trigger is created

o GetExecutionModule(string moduleName) : Return
execution Module from Module name

o GetOrderedExecutionModules() : Return list for all
registered Modules

How To Refer

o Referring through Action Parameter of Main Module :

This could be referred during Action development of
Main Module accessed through ModelTask.Context

» Referring through ModelContext.Current : Can be
used at any point.

Trigger Performance

The Performance node of MMC2 monitors the overall
performance of triggers registered in the target server. By
analyzing the performance through the Trigger Performance,
you can check which stage of the task is delayed when the
engine is started. Especially, developers and administrators
can compare the performance of vmodel or dll before and
after through the data. The following sections describe how

MOZART Management Console(ENG)

153

to view the performance of the Trigger registered in the
target server and the functions of the Performance window.

How to Collect Trigger Performance
Information

To check the performance of the trigger registered in the
target server's in Performance, one of the options in Trigger
Argument needs to be enabled. The argument can be
configured as follows.

In Server Explorer, select the target server for which you
want to set the Trigger Argument.

Double-click the Trigger node of the target server to
activate the Trigger window.

Select the target Trigger to record in the Performance
and double-click or click the [Edit] button in the upper
menu bar.

In the Edit Trigger Dialog, go to the Target Job tab.

Go down to the bottom of the list shown in the Target
Job, check the #performance-profiling check box and
click the [OK] button to save the settings.

Performance Ul

e Job Summary

MOZART Management Console(ENG)

In Job Summary, you can check the total number of jobs
registered in target server and the number of triggers
mapped to job.

154

Job Summary
temn Count

» | Total Job 19
Trigger mapped Job 17
Trigger un-mapped Job 2

o Total Job : The total number of jobs registered in the
target server.

o Trigger mapped Job : The number of jobs
registered in the target server, which is registered by
Trigger. When you double-click Trigger mapped Job
Row, you can check the list of jobs for which the
trigger has been registered. Even if multiple triggers
are mapped to one job, the count of job is one in the
trigger mapped job. (EX: Job A {Trigger A, Trigger B,
Trigger C} -> Trigger mapped Job = 1)

-~

888 Trigger mapped Job l = & |_—E"vhj1

Job MName

Server Test 2.5erverTest3

Server Test 2.5erverTestd

Load Testl.Load Testl

Load Test2.Load Test2
LoadTest3.Load Test3

Load Test_Monitor.Load Test_Maonitor
Load Test_Executor.Load Test_Executor
Load Test4.Load Test4

W # 4 Record 7 of 17 + W M

Close

= Trigger un-mapped Job : The number of jobs
that triggers are registered in the target server.
When you double-click Trigger un-mapped Job
Row, you can see a list of jobs for which triggers
are not registered.

o Trigger Summary
Trigger Summary is a summary of the triggers
registered in the target server. You can check the

MOZART Management Console(ENG) 155

MOZART Management Console(ENG)

detailed information of triggers in the target server
such as the number of triggers that are activated /
deactivated among the registered triggers and the
number of triggers to be recorded in the
performance.

Trigger Summary
Ttem Count

» ; Total Trigger 20
Active Trigger 14
Profiing Trigger 6

» Total Trigger : The total number of triggers
registered in the target server.

» Active Trigger : The number of Triggers
registered in the target server with activated
[Enabled] option.

» Profiling Trigger : The number of Triggers that
#performance-profiling is true and registered in
the target server.

o Trigger Performance

Trigger Performance is the area where the
performance aggregation information of Profiling
Triggers is expressed numerically and graphically.
When the task is executed, you can check the
detailed information such as the consumption time of
each step, the total execution count of the trigger,
and the success / failure ratio. The following
definitions are about the terms used in the Trigger
Performance area.

» Period : Sets the period during which users
want to check Trigger Performance. The period
can be selected from Days / Hours and calls the
aggregated history before Days / Hours set
based on the current time.

= Trigger

o Name : The name of the registered Trigger
Node.

156

MOZART Management Console(ENG)

Description : A description of the registered
Trigger of the target server. Description can
be entered at the Triggers node.

Trigger

Mame 4 | Description

Colzboration

Dependent Dependent Trigger Test
Fab

Fab3

FabCopyTest

» RunTime(sec)

DOWNLOAD : Displays the average elapsed
time downloading data from DB of the total
number of times the task has been
executed.

PERSIST_IN : Displays the average elapsed
loading Input Data of the total number of
tasks performed.

ENGINE_RUN : Displays the average run-
time of the execution of module (Pegging,
Simulation, CBS, etc) of the total number of
tasks performed.

PERSIST_OUT : Displays the average
elapsed time storing the engine results.

SAVE_DB : Displays the average elapsed
time writing the result data to DB.

TOTAL_RUN : The average time of
cumulative time from DOWNLOAD to
SAVE_DB Action.

RunTime(sec)

DOWNLOAD PERSIST_IN EMNGIME_RUN PERSIST_QUT | SAVE_DB TOTAL_RUN
00:00:00 00:01:18 00:04:04 00:00:02 00:00:00 00:06:07
00:00:00 00:03:26 00:00:21 00:00:02 00:00:00 00:04:09
00:00:00 00:00:49 00:02:25 00:00:02 00:00:00 00:03:37
00:00:00 00:00:41 00:00:20 00:00:00 00:00:00 00:01:04
00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:02

157

MOZART Management Console(ENG)

Note

ax

In RunTime (sec) of Trigger
Perfomance, the average

consumption time of each target
Trigger by action is displayed. In the

bottom left grid of the Trigger

Performance area, you can check the
maximum / minimum consumption

time of each trigger.

Action Min Average
PERSIST_IM 00:00:49 00:01:18
ENGINE_RUM 00:02:29 00:04:04
PERSIST_OUT 00:00:01 00:00:02

Furthermore, in the lower right part of the Trigger

Max

00:01:32
00:04:32
00:00:03

Performance area, you can see the ratio of the
number of execution of the target Trigger for the
user-defined period in the TOTAL_RUN time for
each action in graph form. For checking the
detailed information, you can check the
execution time of Trigger action executed at the
relevant time by mouse over the bar graph.

00:03:00

00:02:00

00:01:00

00:00:00

Date: 2017-05-10
COWNLOAD: 00:00:00
PERSIST_IN: 00:00:44
ENGINE_RUM: 00:02:14

I pERSIST_OUT: 03:00:01
SAVE_DB: 00:00:00

TOTAL: 00:02:58

» Reliability

DOWNLOAD
PERSIST_IN

— ENGINE_RUN

[PERSIST_OUT
SAVE_DB

e MIN : The shortest execution time among
the entire execution of target trigger.

158

MOZART Management Console(ENG)

e MAX : The shortest execution time among
the entire execution of target trigger.

e LIMIT : The execution time limit of the target
trigger. You can set it in Triggers -> Target
Trigger -> Schedule Tab -> Stop task if its
longer than.

e RUN_COUNT : The total number of times
that the target trigger has been executed.
The count does not increase in case trigger
has been stopped by users stop the task
with Stop task in Monitoring or the Stop
Trigger if it runs longer than option.

e FAIL_COUNT : The number of times the
target Trigger has been abnormally stopped
due to an error.

o FAIL_RATE : The percentage of
FAIL_COUNT out of RUN_COUNT of the
target Trigger.

e SUCCES_RATE : The ratio of RUN_COUNT
of the target Trigger that was performed

normally.

Reliability

MIN MAX LIMIT RUN_COUNT FAIL_COUNT FAIL_RATE SUCCESS_RATE
00:03:35 00:07:06 00:00:00 3 0 0% 100 %
00:04:09 00:04:09 00:00:00 1 0 0% 100 %
00:00:01 00:07:37 00:02:00 22 6 27 % 73%
00:01:04 00:01:04 00:00:00 1 1 100 % 0%
00:00:02 00:00:02 00:00:00 1 1 100 % 0%

» Trigger Performance Dialog (Server Machine
Resource Utilization Check)

In the Performance window, the CPU / Memory
usage and percentage of the target Server
Machine is displayed in a graph form in the
Trigger Performance Dialog during execution of
trigger. In the Trigger Performance Grid of the
Performance window, the Trigger Performance
Dialog window pops up if you double-click the
Row of the target Trigger.

159

Trigger Peformance = | B ki)

Trigger Name: Fab

Description:

Period: 6 = |Hours ~

a0

[Trigger CPU
[l cther Process CPU
I Trigger Memary

&0
M s=rver Memory

Usage (%)

o Date: 2017-05-12 AM 9:59:00

1 I Trigger CPU: 9352 %
2017-05 [l Other Process CPUL 8,08 % 12 2017-05-12 2017-05-12 2017-05-12
10:0C I Trigger Memary: 28,43 % 13:00 14:00 15:00

I Cther Process Memary: 49,41 %
a0

(%)

&0

Usage

a0

2017-05-12 2017-05-12 2017-05-12 2017-05-12 2017-05-12 2017-05-12
10:00 1100 1z:00 13:00 14:00 15:00

The Period is based on the user-specified period in Trigger
Performance and users can set the period again through In
the Trigger Performance Dialog window. In the Trigger
Performance Dialog window, the execution time is counted at
the time when the target trigger is executed. The total CPU /
Memory usage of Server Machine during Trigger execution
time is displayed as a graph. The upper blue graph shows
the CPU usage and the lower green graph shows the
memory usage. The light blue bar graph is the percentage of
total CPU usage that the target Trigger (MozartAgent
process) occupies and the light green bar is the percentage
of Memory total usage that the target Trigger occupies.
Darker colors represent the percentage of processes other
than triggers. like most graphs in MMC2, you can check the
detailed information in Trigger Performance Dialog if you
mouseover over the graph bar.

How to Use Backup

When registering multiple Jobs/Triggers in the Server and
executing Tasks, the HDD capacity can be fill in
WorkingDirectory because of the accumulated engine result
and log file. The results of engine run cannot be saved

MOZART Management Console(ENG) 160

because due to insufficient HDD capacity when the
administrator doesn’t care about the HDD capacity. MMC2
provides the function to allow users to schedule backups for
managing HDD capacity efficiently. The following settings are
possible through the MMC2 Backup function.

o Backup Cycle : Users can set a backup cycle just the
way you set Task Trigger.

o Back Path : You can designate the path for backup to
different drive other than where WorkingDirectory is
located.

o Delete Source file(s) after backup : You can decide
whether to keep or delete the source file after performing
the backup operation.

» File Filtering : You can set whether only certain
extensions in the source path are backup progress or
exception.

¢ Set Min/Max File Size : You can set the maximum and
minimum size of files to be backed up.

» Back for File(s)/Folder(s) with Specific Date : You can
set files to back up that are created within specific time
or date.

Please check Backup Registration/Modification to see
more details on how to configure backup schedule through
MMC2.

Creating Backup Schedule

1. In the Server Explorer, select the target server for
Backup registration.

MOZART Management Console(ENG) 161

Double-click the target server's Backup to activate the
Backup query screen.

Click the [Add] button on the top menu bar.

In the New Backup Dialog, enter information for
Schedule, Settings Tab.

Enter the information in Schedule Tab. The basic setting
is the same as the Trigger registration method

7 Mew Backup Schedule

Schedule Settings

[E=1 RN &

Trigaer name! TestBackup|

Category:

Description:

Settings

@ One Time Stat 2017-04-13

=) Simple [Expire:
= Daily

O Weskly

) Monthly

= Dependent

207-04-13

Advanced Settings
[] Priarity:
[] Stop task if it runs longer than!

Enabled
[F] Trace

Schedule Now

E- PM EB219

:

PM B:21:18

O

00:00:00

[C] Retry Interval:

Retry Count:

00:00:00

UE

6. Enter the information in Settings Tab.

MOZART Management Console(ENG)

162

https://www.notion.so/7371408630d541908ae16ec0429e5bd4#39a8d912d606468f97b45db4bc804e12

Mew Backup Schedule = EoE ===
Schedule | Settings
Folder Pairs
o)]

Palicy

Remnove source files after backup

Backup files as ZIP cornpression

Include hidden files and folders
Filter

File size

Min size: Max size

File Type filter: seperator ;

Last Wirite Time: 1 | [Hours
Log

Save Log
Log Directory:
Schedule Now 0K Cancel

» Folder Pairs : This section is to set the
source/destination folder for the backup.
Source/Destination folder pairs are be added by clicking
the == button and to delete the pair click the == button.

e Policy : Sets up the backup policy. Multiple selections
are possible.

o Remove source files after backup : Option
whether to delete the source files/folders after
backup.

o Backup files as ZIP compression : Option whether
to compress source files and save it to the
destination.

o Include hidden files and folders : Option whether
to back up hidden files and folder from the source.

» Filter : Sets the filter conditions of Backup. Multiple
settings are possible.

o File size : You can limit the maximum/minimum size
of the file to be backed up.

» Min size : Any file size below Min size value will
be excluded for backup (units: KB/MB/GB)

MOZART Management Console(ENG) 163

» Max size : Any files size above Max size value
will be excluded for backup (units: KB/MB/GB)

o File Type filter : Backup files only or exclude from
backup with the configured file extensions.

» including : When this option is selected and the

file type is entered, only the files with the

corresponding type in the source path will be

backed up. Separator is used as ';' when
inputting multiple files.

» excluding :When this option is selected and the
file type is entered, the files with the
corresponding type in the source path won't be

backed up. Separator is used as ;' when
inputting multiple files.

o Last Write Time : Option whether to backup files
that exceed the specified period. The basic unit is
hour / day. (i.e. If the period is set as 1 Hour, the last
modification date of the file that has passed one hour
from the current date will be backed up.)

e Log : Option whether to leave logs for Backup

o Save Log : Logs for backup are saved when the

checkbox is enabled.

o Log Directory : Set the log file path of Backup. The
backup log file is saved as a text document in .log
format and the file name format is backup- [Backup

Name] -yyyymmdd-hhmmss.log.

workingDirectory#LogswiackupLogi¥ = B3
Marne Date Size Attributes
| backup-DataBackup-20170328-233917 109 2017-03-28 23:39:18 125 bytes -a-
|| backup-DataBackup-20170328-233941.log 2017-02-28 22:39:43 1kb -a--
| backup-DataBackup-20170328-234027 log 2017-03-28 23:40:29 196 bytes -3
|| backup-DataBackup-20170328-234102.log 2017-03-28 22:41:04 125 bytes -a--
|| backup-DataBackup-20170328-234127 log 2017-03-28 23:41:29 1kb -a-
|| backup-DataBackup-20170328-234 149,100 2017-03-28 22:41:50 336 bytes -a--
| backup-DataBackup-20170328-234336.log 2017-03-28 23:43:37 336 bytes -3
|| backup-DataBackup-20170328-234425.log 2017-03-28 22:44:27 1kb -a--
|| backup-DataBackup-20170328-234444.log 2017-03-28 23:44:46 1kb -a-
|| backup-DataBackup-20170328-234511.log 2017-02-28 22:145:12 1kb -a--
| backup-DataBackup-20170328-234532.log 2017-03-28 23:45:34 196 bytes -3
| backup-DataBackup-20170328-234648.log 2017-03-28 22:46:50 530 bytes -a--
|| backup-DataBackup-20170328-234811.log 2017-03-28 23:48:12 265 bytes -a-
|| backup-No Name-20170328-233632.log 2017-03-28 22:36:24 119 bytes -a--

MOZART Management Console(ENG)

164

Note

The backup history log path does not need to be in
the WorkingDirectory. A node to check logs like
Projects are not added to Server Explorer and
users can view the history by registering a shortcut
or accessing the path where the backup logs are

ax

saved.

Checking Backup

1
2.

In Server Explorer, select the Backup Check Se.

Double-click the target server's backup file to activate the
Backup screen.

In the Backup list, click the Backup Trigger that you want
to view the Backup files / folders.

In the Destination Folders Tab, you can see the files and
folders of the selected Backup.

Editing Backup Schedule

1.

MOZART Management Console(ENG)

In Server Explorer, select the server to modify the
backup schedule.

Double-click the target server's Backup node to activate
the Backup screen.

Double-click Backup Trigger in the Backup.

Edit the Schedule / Settings Tab information and click the
[OK] button.

165

Deleting Backup Schedule

1. In Server Explorer, select the server to delete the backup
schedule .

2. Double-click the target server's Backup to activate the
Backup screen.

3. Select the Backup Trigger to be deleted from the
Backup.

4. Click [Remove] button on the top menu bar to delete
Backup.

User Account and
Authorization

User Account and Authorization

Credential information is required in order to access to the
server via MMC. User with administration power can create
user account and grant authority to restrict the usage of
MMC functions according to user roles. The reason for
separating authority is to avoid unnecessary incidents that
could be caused by users rather than by the system. In this
case, it is difficult to track the problem and sometimes
leading to more serious ones. Default administrator account
is created during MOZART Server installation (refer to
Server Management). Other authorities should be granted
manually and the following describes the authorities provided
by MMC and its limitations.

o Administrator : This authority has full access to all the
functions in MMC. Only administrator power can
create/modify credentials and grant authority to user
accounts.

MOZART Management Console(ENG) 166

» Developer : This authority has access to most of the
functions in MMC except for creating/editing credentials
and granting authority. Developer power is authorized to
manage Projects and to distribute files.

e Operator : This authority is used mainly for Job/Trigger
management and execution. Operator does not have the
authority to do any task from Projects node.

e Viewer : This authority has the least access to MMC
functions. Job/Triggers cannot be created or executed.
This authority is mainly used when only information from
Monitoring/Performance is required.

The following table shows which of the functions from MMC
are permitted to use depending on the authority power.

Function Name Viewer | Operator | Developer | Administrator
Connect Server 0 0 0 0
Edit Server Connection 0 0 0 0
Delete Server Connection 0 0 0 0
Projects node wvisiblity 0 0 0 0
Jobs node visibility 0 0 0 0
Triggers node wvisibility 0 0 0 0
System node visibility 0 0 0 0
Backup node visibility 0 0 0
Monitor node visibility 0 0 0 0
Performance node visibility 0 0 0 0
Shortcut node visibility 0 0 0 0
User node visibility O O O
Deployable Folder node visibility 0 0 0 0
Refresh Job Schdeuler Status 0 0 0 0
Pause Job Scheduler O O O
Resume Job Scheduler 0 0 0
License Information 0 0 0 0
Server Information 0 0 0 0
Add Project 0 0
View Project 0 0 0 0
Edit Project 0 0
Remove Project 0 0
Commit & Deploy O O
View History (Projects) 0 0 0 0
View Jobs list 0 0 0 0
View Job O O O O
Add/Remove/Edit Job (@] (@] (@]

MOZART Management Console(ENG) 167

View History (Jobs) 0O 0O 0O 0O
Manage Job Types O O O
Add/Delete/Edit Job Type @] @] @]
View Trigger list 0 0 0 0
View Trigger 0 0 0 0
Add/Remove/Edit Trigger (@] (@] (@]
View History (Triggers) 0 0 0 0
View Trigger Execution log 0 0 0 0
View Backup trigger list O O O
View Backup trigger 0 0 0
Add/Delete/Edit Backup trigger 0 0 0
View Destination folder 0 0 0
Download from Destination folder O O O
Add/Remove/Edit Monitor view (@] (@] (@] (@]
See Monitor view 0 0 0 0
Stop Trigger 0 0 0
View Performance 0 0 0 0
View Shortcut 0 0 0 0
Add/Remove/Edit Shortcut (@] (@] (@] (@]
Download file from Shortchut 0 0 0 0
View Users list 0 0 0
Add/Remove/Edit Users (@]
View History (Users) 0O 0O 0O
View Deployable folder (mozart.dir) 0 0 0 0
Download file from Deployable folder 0 0 0 0
Upload file from Deployable folder 0 0 0 0
Remove file from Deployable folder 0 0 0
End MMC 0O 0O 0O 0O

Please refer to How to Register/Modify Users for more
details on how to create user account and grant
authorization to the account.See Also

How to Register/Modify Users

Create User Credential

1. Select the server from Server Explorer to add user
credential.

2. Connect to the server with administrator account.
3. Double click on Users to activate Users tab.

4. Click [Add] button from the top side menu bar.

MOZART Management Console(ENG) 168

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#cb9f0d005bd5440aaddb7331abed923c

5. Enter required information through Add new user Dialog.

MOZART Management Console(ENG)

-

=]

Add new user Iﬁ

Input user information.

UserID: Admin *

Password : A *

Fricdcdciedr &

Password again :

First Mame : Andrew

Last Mame: Park

Ermail : andpark@rnozart.com

Role: Administrator | ¥ »

Administrator account

Description:

| QK || Cancel |

User ID : Enter the ID to be used to access to the
server. (Mandatory)

Password : Enter the password to be used to
access to the server. (Mandatory)

Password again : Re-enter the password entered in
Password for validation. (Mandatory)

First Name : Enter the first name of the owner of the
account. (Optional)

Last Name : Enter the last(sir) name of the owner of
the account. (Optional)

Email : Enter the e-mail address of the owner of the
account. (Optional)

Role : Select the user role from the list. For more
details regarding authorization please refer to User

169

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#0206c107690646a3b7d13703b9e0b306

Account and Authorization. (Mandatory)

o Description : Enter any additional information for
the user account.

6. Click [OK] after entering all information.

Edit User Information

1. Select the server from Server Explorer to edit user
credential.

2. Connect to the server with administrator account.
3. Double click on Users to activate Users tab.

4. Select the user to edit from the list, double click or click
[Edit] button from the topside menu bar.

¢ UserlD cannot be modified. In addition, the Role for
default account 'sa’' cannot be modified.

o If the Password textbox is empty during modification,
the previously set password will be maintained.

Deleting Users

1. Select the server from Server Explorer to delete user
credential.

2. Connect to the server with administrator account.
3. Double click on Users to activate Users tab.

4. Select the user account from the list and click [Remove]
button to delete the user.

0 Warning
Default account 'sa' cannot be removed.

MOZART Management Console(ENG) 170

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#0206c107690646a3b7d13703b9e0b306

Dependent Trigger Example

#Create-csv-files

Argument Description

Indicates whether to additionally create CSV files of Input and Output data
during zip compression. When the task is performed with this option enabled,
both vdat and csv format files will be created inside each Data and Result
folder. See here for an example.

!@ BucketHistory.csv 61472022 3:02 PM Microsoft Excel C... 55 KB
|j BucketHistory.wdat /14,2022 3:02 PM VDAT File &1 KB
!@ EdsOut.csw 61472022 3:02 PM Microsoft Bxcel C... 2,070 KB
|j EdsOut.vdat /14,2022 3:02 PM VDAT File 1,409 KB
E@ EngineRunTime.csv £/14/2022 3:02 PM Microsoft Excel C... 1KB
|J EngineRunTime.vdat B14/2022 3:02 PM VDAT File T KB
E@ EqpPlan.csv £/14/2022 3:02 PM Microsoft Excel C... 29,432 KB
|J EqpPlan.vdat B/14/2022 3:02 PM VDAT File 19,423 KB
E@ ErrorHistorny.csv 61472022 3:02 PM Microsoft Bxcel C... 8,223 KB
|J ErrorHistery.vdat B/14,/2022 3:02 PM VDAT File 7548 KB
E@ ExeFpRunFlag.csv 61472022 3:02 PM Microsoft Bxcel C... 1KB
|J ExeFpRunFlag.wdat 6/14,/2022 3:00 PM VDAT File KB
E@ InPlan.csv 61472022 3:02 PM Microsoft Bxcel C... 2,812 KB
|J InPlan.vdat 6/14,/2022 3:02 PM VDAT File 1,971 KB

The contents in Result folder when task is performed with #create-csv-files = true

How to Update MOZART Server

How to Use Job Scheduler

The following shows how to manage Job Type and Job and how to schedule and
manage Job execution through MOZART Management Console.

MOZART Management Console(ENG) 171

+ Registering/managing_Server : This explains how to register and manage
MOZART Server through MMC.

* Registering/managing_Job Type : This explains how to register and
manage executable Job Types to the target Server.

+ Registering/managing_Job : This explains how to register a Job to the
target Server and how to monitor the Job status.

+ Registering/managing_Trigger : This explains how to register a Trigger and
how to monitor the Trigger status.

o Registering/managing_Shortcut : This explains how to register a Shortcut
and how it could be explored through the server.

MOZART Management Console(ENG) 172

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#7d761c0b017a4789a28fc0eb4a972000
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b1fe20f0887c4ab5b9446885df50cce4
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b86d7d108faa40ebbc9d43963e7184e0

