
MMC : MOZART Management Console

본 문서는 고객사 전용으로 작성한 것으로 (주)브이엠에스 솔루션스의 사전 서면 동의 없이 고객사 외부에 회람, 인용, 사본 배포를 금합니다.

This material was prepared by VMS Solutions, solely for the use of our clients, and it is not be relied on by any third party without VMS Solutions written consent.

User Manual



MOZART Management Console(ENG) 1

MOZART Management 
Console(ENG)

Level 1
INTRODUCTION

MMC Overview

Mozart Model Overview

Job Type

Job

Trigger

Shortcut

Introduction of project 
and Deploy Management

SERVER & 
CLIENTSETTINGS

Server & Client Setting 
Overview

Model Download Setting

AutoUpdate Setting

LocalLicense Service 
Concepts

MMC USER GUIDE

Server Management

ProjectManagement

Level 2

Job Type

Job

Trigger

Extended Arguments

Managing Shortcut

Local License Service 
Concepts

Model Download 
Setting

AutoUpdate Setting

Server Management

Level 3

Mozart Model Overview

Job Management

Trigger Management

Mozart Server Installation

Manifest Editor

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#7d761c0b017a4789a28fc0eb4a972000


MOZART Management Console(ENG) 2

How to Use Job 
Scheduler

Monitoring

Trigger Performance

How to Use Backup

User Account and 
Authorization

Managing Shortcut

How to Manage Job 
Type

Job Management

Trigger Management

How to Use Monitoring 
View

Data Pre-loading

Mozart Server 
Installation

How to check Server 
Information

How to check server 
Information

Extended Arguments

Extended Arguments

Model and Data to Temp 
Folder to Run Trigger

Run Trigger from Another 
Domain/Execution DLL 
Version

Dependent Trigger 
Example



MOZART Management Console(ENG) 3

INTRODUCTION

MMC Overview

MOZART Management Console(MMC) is a MOZART Server management tool. One 
of the features in MMC is job scheduling which user can schedule jobs to the server 
to run models developed from MOZART IDE, sending e-mails or to run certain 
programs. These jobs can be triggered on a certain time or start/end of events. 
Other features of MMC are registering jobs, uploading model files, history 
management and distribution management

Main Concept of MOZART Job Scheduling
Job Scheduling consists of three management items like Job Type, Job, and Trigger.

Job Type
Job Type is type of Job that can be executed by Job Scheduler. There are three job 
types such as sending e-mails, running a program and Simple, Model, Collaboration 
tasks developed through MOZART. Among these three tasks, Model and 
Collaboration Task execution contents depend on target Model(check MOZART 
Model Overview) and arguments so Job Type has to be specified in advance. Only 
Simple Task does not need to be pre-defined because the task is not based on 
Model. (How to manage Job Type)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b9c7255b5c6d4a869cccceae5537e904


MOZART Management Console(ENG) 4

Job
Job is an execution object task configured with Job Type parameters. Jobs can only 
be triggered. JobType can be configured as several Jobs that works differently 
according to Argument configuration. As a summary, JobType and Job has 1 : N 
relationship. Job type for sending e-mail message for instance can have multiple 
jobs to send e-mails if the arguments for contact point and contents are different. 
(How to manage Job)

Trigger
Trigger is a set of information that defines conditions and its execution method for 
executing target job. Trigger can define and create a target job and its execution 
condition. Job should be registered by MMC and its Job condition can be defined in 
two ways such as time-based or event-based. (How to manage Trigger)

Time Scheduler(time-based) : Triggers job on a specific time or in a cycle.

Condition(event-based) : Triggers job according to start/end of other trigger 
events.

The following figure illustrates the relationship among main concepts of job 
scheduling.

Job Type

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3


MOZART Management Console(ENG) 5

Job Type is a type of job that can be performed by Job Scheduler. Job Type has 
Arguments that determine the execution method. Job Type can be managed by 
the Edit Job Type menu on the Job Management window. You also can select a 
job type when defining a Job.

The following sections are descriptions of the basic job types provided by the 
MOZART Job Scheduler.

Sending e-mail ($sendmail)
This job type is for sending an e-mail when it is executed. You should specify the 
sender, recipient, subject, body and attachments in the Job Type Arguments. 
Furthermore, you also configure the Outgoing Mail Server (SMTP). For 
administrative purposes, you may set it for sending e-mails when certain jobs fail 
to run by MMC.

Executing Program ($exec)
It starts a program or script. If you want to execute the program or script specified 
that the command line arguments are used, you can set these arguments in the 
“Add arguments (optional) text box”. In the “Start in (optional) text box”, you can 
specify a working directory on the command line where you run the program or 
script. This directory should be a path for program/script file or the file path used 
for the executable file. Programs that are built into Windows and executable files 
made by users are all executable if a user has a permission for accessing them.

Model Task ($model)
Model Task is a Job Type for executing model-based tasks developed by 
MOZART IDE. The Model Task type has default arguments (see Extended 
Arguments) for setting the model's behavior (see MOZART Model Overview). 
The most basic argument for execution is the model information, which specifies 
a model in the Working Folder of the Server. The model to be executed defines 

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b9c7255b5c6d4a869cccceae5537e904


MOZART Management Console(ENG) 6

the arguments to be set for execution as internal arguments, and these 
arguments should be set when defining the task.

Collaboration Task ($cola) 
The Collaboration Task is a task that enables multiple tasks to collaborate with 
others through communication between tasks at the time of execution. You need 
to select the base model and set other models for the collaboration. (see 
Extended Arguments)

MOZART Model Overview

MOZART Model is a set of Data that includes definitions about Input/Output data 
Schema, Query, Data access information that are used in a logic implemented 
through MOZART, and Arguments that are used for logic control. When a logic is 
implemented, Schema and Arguments are used. When a logic is executed, data 
access information and Query are used in order to retrieve and save data. 
Especially, execution needs Assembly information and access information that 
includes a logic executing the corresponding Model. So a Model includes these 
information. That is, executing MOZART Model requires Model file and its 
execution file.

There are two methods to execute this kind of Model on MOZART Framework. 
The first is to execute Model through MOZART Studio. This method is normally 
used when a developer executes Model for testing during development or 
performs various experiments with the same Model by changing input 
information. The second method is executed through MOZART Server. This is 
used to apply Model execution's result to operating system according to user 
scenario. The following figure illustrates Model's composition and operating 
structure.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821


MOZART Management Console(ENG) 7

Model Task is a default Job Type that is provided by MOZART. This has a role to 
execute a target Model by entering Extended Arguments' value for configuring 
how to execute tasks (execution(0) to (3)) that are executed by Model Task. 
MOZART Studio can run Model similarly to a method by Model Task, but 
basically most Model is executed with already created Input information so that a 
task to download Input data for executing a logic is executed by a separate menu 
if necessary. As a result, MOZART Studio executes execution(1) through (3) as a 
batch.

How to Manage Job Type

Job Type is a type of Job that can be executed by Job Scheduler. Job Type can 
be categorized into two types. There is general type, which are sending e-mails 
or running programs. The other is MOZART exclusive job types, which are 
Simple Task, Model Task, Collaboration Task. These types are developed using 
MOZART.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#632fc847defa4c789e4626cfadbf2910
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#632fc847defa4c789e4626cfadbf2910


MOZART Management Console(ENG) 8

The task of Model Task and Collaboration Task depends on the target Model and 
argument settings. Therefore, these two job types needs to be pre-defined. In 
addition, general type jobs require being pre-defined as well. Only Simple Task 
does not need to be pre-defined because the task is not based on Model.

Job Type can be added, modified or deleted through [Edit Job Type] menu in 
Job inquiry page.

Inquire Job Type
1. Select a target server to inquire.

2. Click [Manage Job Types] menu in Jobs node.

3. Registered job types and pre-defined job types from the system can be 
inquired through Job Type Manager dialog.



MOZART Management Console(ENG) 9

💡 Note 
Job Types with $ indicator are job types defined by the system. 
These job types cannot be edited by user.

4. If it is not System Job Type, double-click the name or press [Edit] button on 
the bottom of window in order to inquire or modify the information of the job 
type.

Registering Job Type
1. In order to register a new Job Type, select a target server in Sever Explorer.

2. Right click on the jobs node of the target server and then click [Manage Job 
Types] menu.

3. Click [Add] button on the bottom.

4. A dialog to define the job type will be opened.

5. Fill in the information through Definition tab.

Category : Define Job Type's category. User can input arbitrarily.



MOZART Management Console(ENG) 10

Title : Define Job Type name. This is used as an information defining Job 
Type in UI.

Guid : Input GUID that can define Job Type solely. If a button at the right 
of Text Box is pressed, new GUID is automatically generated.

Assembly : This designates Assembly/Type that implements an 
executable ITask in MOZART Framework.

Press [...] button on the right side of Type Text Box to activate Select 
a Type Dialog.

Click [Load an Assembly] to select the type for the new build DLL 
files.

An item that implements ITask in the selected Assembly is displayed 
in tree.

Select a Job Type to be registered and click [OK] button.

If Assembly, Type Text Box of Definition Tab are filled with the 
selected Type information, selection is properly processed.

Type : This is selected together when assembly is selected.

Configuration File (Optional) : Config file to configure the log history 
type of Job type. The config file should be copied to Working Folder in 
the server first to be registered. When this is done press [...], to select 
the config file stored in the server.

Private Path (Optional) : Private Path means a folder where the 
corresponding Job Type's Assembly file and its related file are saved. If 
path is not designated, Working folder is used. Working folder is 
designated when MOZART Server is installed and this is the only folder 
that can be accessed by MMC.

Description (Optional) : Description of the job type can be included in 
this section.

6. If all required information is added to Definition tab, move to Arguments tab 
to define the arguments for the selected task.



MOZART Management Console(ENG) 11

7. The entered value of the corresponding Argument is used to configure how 
Job Type is working when Job and Trigger is registered.

Deleting Job Type
1. Select a target server in Server Explorer in order to register a new Job Type.

2. Right click on the jobs node of the target server and then click [Manage Job 
Types] menu.

3. Select a Job Type to be deleted from the list.

4. Click [Delete] button to delete the job type. Please note that job type 
provided by the system cannot be deleted.

Job



MOZART Management Console(ENG) 12

Job is an execution object task configured with Job Type parameters. Jobs can 
only be executed through Triggers. The Job Type can be set to multiple Jobs that 
operate differently depending on the Arguments setting. Thus, Job Type and Job 
are in 1: N relationship.

The following are used to define Job.

Basic Information
Job Name : Name of Job. Jobs are categorized by job names.

Description : Job description.

Job Type : Job Type to be executed by the Job. You can select from a 
predefined Job Type (see Job Type) or user-defined Job. Job Type's Argument is 
changed according to the selected Job Type. For the Model Task and 
Collaboration Task (see Model Overview), you can select additional attributes. In 
order to execute a model-based task, a model should be specified by default with 
the following additional properties according to the execution method and 
collaboration method of the model.

Model file : Path of Model file executed by Model Task. List of Model files will 
be displayed when Job is mapped to Project.

Model dll file : This designates the developed dll file to execute Job.

Log dir : This designates a folder that saves the corresponding Job's 
execution log. Log folder of Working folder is configured as base folder.

Additional run count (Optional): This configures the number of repeatable 
executions of a Job. If it is set as 0, no extra execution is triggered. If it is set 
as 1, the Job is executed twice. (refer to How to configure More Run)

Collaboration Count (Optional): The number of target jobs when the 
collaboration with other jobs is required when the job is executed. For 
Collaboration Task, multiple Jobs communicate and collaborate during 
execution. This attribute means the number of Jobs to collaborate with. You 

https://www.notion.so/37c36f8a6c53414cb254dd8ea2cd022e
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b719c0da2bec4f4abda7a94e2d07ce09


MOZART Management Console(ENG) 13

can set the number of jobs to collaborate by this value. (see How to 
configure collaboration task)

Disallow Concurrent Execution : Option whether to allow simultaneous Job 
execution. If this option is enabled(checked), Same Jobs cannot be executed 
although Jobs are planned to start simultaneously in several Triggers.

Arguments 

Each Job Type's Arguments
Configured Job Type's Argument. Sending e-mail has Argument like Sender, 
Receiver, Subject, and Main body, etc. and user-defined Job Type has 
Arguments that were made for configuration when Task was developed. Pre-
defined Argument(refer to Extended Arguments) that is used in Model Task or 
Collaboration Task is also considered as Job Type arguments.

Model Argument
Model Argument is an Argument defined in a Model that is configured as an 
execution target Model by Model Task, Collaboration Task. Each Argument value 
configured in a Job is used as default value for parameter when Trigger is 
created. However, if Parameter's value is redefined in Trigger, the redefined value 
is reflected when the task is executed.

Job Management

Job is a data defining how Job Type works according to which job types to be 
triggered and what arguments to be used. Registered Jobs can be searched 
through Job View for each Server in Server Explorer and add/delete/modify 
options for jobs can be used from the top side menu. Arguments set in job is 
used as the default parameter value configuring the Trigger of the job. In other 

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#6b780bfbc72e4addb0a4f65d52222821


MOZART Management Console(ENG) 14

words, when the value in Trigger is not changed, the job will be executed using 
the parameters set in job.

How to Register/Modify Job : This explains how to register a new job or to 
modify information of the existing registered Job.

How to Delete Job : This explains how to delete a registered job.

Register Job
1. Select a target server to inquire through Server Explorer.

2. Double-click Jobs node of the target server to activate the window to inquire 
jobs.

3. Click [Add] menu on the top menu bar.

4. Enter information on Basic and Parameters tab in "New Job" dialog.

5. First, enter the information in Basic tab.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#3032f13a96c744669957fa289ea08ff7


MOZART Management Console(ENG) 15

Job Name : Name of Job. This name is used as an identifier to discern a 
job from other jobs.

Description : Job description.

Job Type : A combo box to select the job type. There are job types 
based on Model Task which are $model and $cola. The parameters 
needs to be changed according to model type and execution option. For 
these reasons these job types have additional Job setting inputs to 
decide the changes.



MOZART Management Console(ENG) 16

Project : Specify the Project that contains the Model file to be executed 
by the Model Task and dll file information. When you click the drop-down 
list, a list of selectable projects appears.

Model file : Specify the model file to be executed by the Model Task in 
the Project. If there are several model files in one project, only one model 
file in the list should be selected.

Model dll file : Specify the dll file to run the model. You should upload 
the file to the server in advance.

Configuration file : The configuration file that Model refers to. User can 
assign the log Key and folder of the Model execution log files through the 
configuration file.



MOZART Management Console(ENG) 17

Log dir : Specify the folder where the job execution log is to be saved. 
By default, this is selected in the Logs folder of the project. You can 
select a folder by using [...] button on the right side when changing based 
on the [Working Directory / Logs] folder.

Additional run count : Set a value when you want to run the same 
model more than once. The default value is 0. If a value is set, 
Arguments are created to select the setting file to be used for each run.

Collaboration Count : It is displayed when a Job Type of $cola type is 
selected. In order to select the Job Type to be the Collaboration target 
when running the Main Model, Arguments are created to set Job Types 
for each run.

Disallow Concurrent Execution : Enabling this option dose not allow 
MOZART Server to execute identical Jobs simultaneously.

6. Once the Job Type is selected from Basic tab, the list of arguments that could 
be configured for the corresponding job type can be seen through 



MOZART Management Console(ENG) 18

Parameters tab. The value of the arguments could be added through this tab.

💡 Note 
Unlike job types such as sending e-mail, running program or user 
specified job types, Arguments of the Model included from Basic 
tab can be seen if job type is either Model Task or Collaboration 
Task.  Parameters that is displayed at the top part of the following 
figure are Input Arguments that are separately created in Model 
and extendedProperties at the bottom are Arguments that are 
automatically added in order to provide options about Model's 
execution and post-processing. For more information of the 
corresponding Argument, refer to Extented Arguments.

Modifying Job
1. Select a target server to inquire from Server Explorer.

2. Double-click Jobs node of the target server to activate Job inquiry window.

3. Select a job to modify from the list.

4. Click [Edit] menu from the top menu bar.

5. Modify each item in the same way that is used to edit in "Registering a Job" 
. 
+ Please keep in mind that the changes made in the parameters of the job 
after trigger is created will not be applied to the trigger configuration 
automatically.

Deleting Job
1. Select a target server to inquire from Server Explorer

2. Double-click Jobs node of the target server to activate Job inquiry window.

3. Select a job to be deleted from the list.



MOZART Management Console(ENG) 19

4. Click [Remove] menu from the top menu bar.

💡 Note 
In order to delete a Job, the trigger of the job should be deleted 
first. If you try to delete a job while the trigger exists, a warning 
message saying the job cannot be deleted because trigger exists 
will be displayed.

How to configure Config file
Config file can be used to assign the location where the Model execution logs to 
be stored. The following explains how to configure Config file.

1. First, create a Config file for the Model. Add the configuration through normal 
text file(notepad) and save the file using ".config" file extension.

2. The following is the example. The lines should be included as xml code and a 
key has to be added for <appSettings> session.

Usable Keyword

#log-dir : Key designating a folder where Job execution log is saved. 
+ How to configure : Create a folder to save the logs as absolute path or 
a relative path under Working Directory/Logs folder in the server.

Example :

<?xml version="1.0" encoding="utf-8"?> 
<configuration> 
    <appSettings> 
        <add key="#log-dir" value="AModelLog"/> 
    </appSettings> 
</configuration>

If Keyword is written like the above example, log file is created in Working 
Directory/Logs/AModelLog folder.



MOZART Management Console(ENG) 20

3. Upload the configured file into a specific folder in Server. Normally it is saved 
in the folder where Model file is saved.

4. When Job is configured, Config file also should be configured.

5. If the configuration is done like the figure above, Task and Persist logs for the 
job will be created under the assigned folder. The log key of TSK Log file is 
the input value of "model-name" Argument and if log key is not configured the 
default key will be "TSK".

How to Configure more run
If a Model needs to be executed several times through a single Job execution, 
More Run configuration is used. For example, when a Model executes after 
downloading data on a particular time and Model has to execute again with the 
results from the previous Model, More Run can be used to perform this task.

This configuration can be done when Job is configured. The following shows how 
to configure more run.

1. Set job type from to either $model or $cola from Basic tab. (More Run can be 
used from these two job types).

2. Configure Additional run count that is displayed on Job Setting when Job 
Type is selected. If 1 is configured, Model is executed one more time. So 
total number of executions are 2.



MOZART Management Console(ENG) 21

3.  In order to configure argument that is used during additional run, move to 
Parameters tab. Extended argument can be seen at the last part of 
extendedProperties. This argument is used to set the parameter 
configuration for the additional run. Like the following figure, configure #more-
runs = 1 and #more-config-1 will be created.

4. When [...] of #more-config-1 in the above figure is clicked, a window to write 
the values for the arguments from Input Arguments included in the Model. In 
here you may include the input argument values to use during more-run and 
modify the arguments of Extended argument required to be changed during 



MOZART Management Console(ENG) 22

additional Model execution. For instance, if you do not want to write Output 
Data to DB, you can deactivate #save-database option.

Trigger

Trigger is a set of information that defines the conditions for executing a target 
job and how to execute it. Trigger can be created by defining a target job and 
conditions for executing the job. This Job should be registered by MMC and Job 
condition can be defined in two ways, time-based and event-based methods.

The followings are components that defines Trigger.

Basic Information of Trigger and Job 
Execution Condition (Schedule Tab)

Trigger Name : Name of Trigger
Job Execution Condition(Settings) : Basically this condition can be configured 
to execute Job repeatedly in a specific cycle from a  specific time. (a criterion). 
Also by connecting other Trigger's execution, user can assign a specific Trigger 
to be executed  at the start or the end of the connected Trigger execution or to be 
fired when the preceding trigger returns True.

Additional Execution Condition(Advanced Settings) : Additional Trigger's 
execution condition such Trigger priority, run-time limitaion, etc. can be 
configured.

Target Job
Target Job : Target Job for execution can be registered by MMC only.



MOZART Management Console(ENG) 23

Job Parameter : This is used to configure value of Parameter that decides how 
to execute target job. Although Job has already been configured with a default 
value, this can be used when user wants to execute Trigger with the changed 
value.

Failure Action
Failure Job : This is Job to be executed when Target job is failed to be executed. 
As same as other jobs, only the jobs registered by MMC can be selected.

Job Parameter : This is used to configure value of Parameter that decides how 
to execute Failure Job. Although Job is already configured with a default value, 
user can change this value for each Trigger.

Refer to How to manage Trigger to find more details on how to register/delete 
Trigger.

Trigger Management

Trigger is Job Scheduler's managing component that is used to define execution 
target (Job) and execution condition. Multiple triggers can be registered 
depending on the purpose of the job. For example, if one same job has to be 
executed at 7:00 on every Monday and at 21:00 on every Friday, this job requires 
two triggers to perform these events. There are two conditions for the trigger. A 
condition dependent on time is to trigger on a suggested period or cycle and a 
condition dependent on event is to trigger during a specified event.

How to register/modify a Trigger : This explains about how to register a 
new Trigger and how to modify the contents of the existing Trigger.

How to Delete a Trigger : This explains about how to delete a registered 
Trigger.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#200350a5c70c416a95e907bed65d49f3
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#bf295be6109b47feacc322cde26e27ae
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#1d0c4a85a5f640daa6252c771e9971b4


MOZART Management Console(ENG) 24

How to Copy a Trigger : This explains on how to copy a registered Trigger.

Triggers UI 
This section is the description of Triggers UI in MOZART Management Console. 
In the Triggers tab, you can perform tasks such as register, edit, delete, and copy 
triggers. In addition, you can check the history of registered triggers, execution 
log, and so on. The below screenshot is the UI that appears when you activate 
the Triggers node.

Top Menu Bar and Trigger List
This UI is designed to register / edit / delete / search history of Trigger.

Add : This menu is used to register a Trigger.

Edit : This menu is used to edit a Trigger registered in the Trigger list.

Remove : This menu is used to delete a Trigger registered in the Trigger list.

Copy : This menu is used to copy a Trigger registered in Trigger list and add 
it to the list.

Refresh : Button to refresh information such as Next Time / State / StartTime 
/ EndTime and Execution History of Trigger.

View History : This menu is used to view the history of triggers registered in 
the Trigger list. With View History, you can see the history that users have 
performed tasks.



MOZART Management Console(ENG) 25

Log Files Windows
This section is for looking up Trigger log files in \WorkingDirectory\Logs\[Project 
Name]. When log files are included in the search range of Search Option of 
Execution History, the list of files is displayed. In the Log Files section of Triggers, 
the 10 most recently opened files are displayed. To view the entire list, you can 
activate the Logs tab by clicking [Open Folder].

Execution History Window
The Execution History window displays the monitoring information of the selected 
trigger according to the search condition. This information can also be checked 
on the Monitoring node. You can check it by the following steps.

1. Enter the number of days in Search option. The search condition displays the 
last N days of information from the current time. (e.g. the last 10 days from 
now -> enter '10' in Search Option)

2. Click [Query] button



MOZART Management Console(ENG) 26

💡 Note 
Triggers' Execution History is displayed by paging, and initially displays 
items in 10 units according to window size. The user scrolls down in 
increments of 10.

Trigger Execution Log Window
In the Trigger Execution window, you can check the execution time of the Trigger 
selected in the Execution History window step by step. For more information, 
please check Monitoring.



MOZART Management Console(ENG) 27

Adding Trigger

1. Select a target Server where Trigger is registered in Server Explorer.

2. Double-click on Triggers node to open trigger page.

3. Click [Add] from the top menu bar.

4. Enter information for Schedule, Target Job, Failure Action Tab on New 
Trigger dialog.

5. Enter information of Schedule Tab.

Trigger name : Name of the trigger.

Settings : Set trigger condition.

One Time : Trigger the job once at its starting time.

Expire Configuration : If Expire check box is checked, Trigger is 
executed until the configured Expire time.

Simple : Number and cycle of repetitions can be configured. Repeat 
cycles can be set from second to a day. If repeat count is set the 



MOZART Management Console(ENG) 28

event occurs on the condition set on Recur every.

When repeat count is set to -1, the trigger is repeated for unlimited times. In 
this case, the option 'for duration of' will be activated. Check on this option 
and enter the time then the trigger event will occur from the interval set on 
Recur every on the start of each day until the configured duration.

Daily : Schedule can be defined to repeat on a daily basis. Schedule can 
be made likewise as Simple Type.

Weekly : Weekly Cycle can be configured. The day(s) to repeat can be 
designated.

Monthly : Trigger can be set to a combination like (Month + Specific day) 
or (Specific Month + a day in a specific order of the Month).

Dependent : This is an event based condition. A target trigger needs to 
be selected as a reference and conditions to start the trigger event needs 
to be set. (Start/End of target trigger) A trigger set as Dependent will be 
dependent on the target trigger.



MOZART Management Console(ENG) 29

Referred Trigger : The target trigger to execute the corresponding 
trigger. Multiple triggers can be selected.

Execution type : This defines when to trigger according to the condition 
of Referred Trigger.

AtEnd : Triggers when the target trigger of Referred Trigger is 
completed.

AtStart : Triggers when the target trigger of Referred Trigger starts.

ReturnIfTrue : Triggers when the target trigger of Referred Trigger 
returns true. For example, a job to return true can be used when a 
job needs to be executed when system data changes or when a 
trigger of Referred Trigger is to inquire a certain data and the 
condition is met. In this case, the Model Task Return value 
(true/false) needs to be set from the job triggered by Referred 
Trigger. 
+ Example of How to use ReturnIfTrue Type

Execution delay : Set the delay time when the condition in Execution 
type is met.

Advanced Settings

Priority : When multiple triggers start simultaneously, this defines 
priority of execution order.

Stop task if it runs longer than : This option is to set the maximum 
run time of the trigger. If the trigger is performed longer than the 
configured max time, the trigger will be terminated by force.

Enable : Activate corresponding trigger

Retry Interval : Decides retry intervals when trigger is failed.

Retry Count : Decides retry counts when trigger is failed.

6. Enter information of Target Job Tab.



MOZART Management Console(ENG) 30

Target job : The target job to trigger. Only the registered jobs can be 
selected.

Argument : Input Parameter is configured according to needs when 
Target Job is executed. Value of parameter that is configured in a Job is 
used as a default. When a Job is executed, Argument value configured in 
Trigger is used.

7. Input Failure Action Tab Information . It has the same input format as Target 
Job's.

Failure Action : A job to execute when target job fails to execute by 
adding new function or a job as a backup for complement.

Argument : Configures the input parameters of the job in Failure Action. 
As same as in Target job tab, the default value is the parameters set in 
job.

Modifying Trigger



MOZART Management Console(ENG) 31

1. Select a target server to modify trigger in Server Explorer.

2. Double-click on Triggers node to open trigger page.

3. Select the trigger from the list to modify.

4. Click [Edit] from the top menu bar.

5. Change the information as done through "Registering Trigger" section.

How to Copy Trigger

Trigger Copy
If you want to compare the results of two triggers by changing the part of 
arguments or if you need to change the name of an already registered Trigger, 
you can copy Triggers as shown below.

1. Select a target server to be checked in Server Explorer.

2. Double-click Triggers node to open trigger page.

3. Select a trigger from the list to be copied.

4. Click [Copy] menu from the top menu bar.

5. Enter the name of the trigger to be copied.

💡 Note 
Please note that an error will occur if the entered name of the copied 
trigger already exist in the list. Be advised not to use any of the name 
already in the list.

Deleting Trigger
1. Select a target server to be checked in Server Explorer.



MOZART Management Console(ENG) 32

2. Double-click Triggers node to open trigger page.

3. Select a trigger to be deleted from list.

4. Click [Remove] menu from the top menu bar

Model and Data to Temp Folder to Run Trigger 

Run Trigger From Another Domain/Execution DLL Version

Dependent Trigger Example

Extended Arguments

The actual execution of Task and Model that are created through MOZART 
Project is done through ModelTask of MOZART execution engine. The preset 
arguments to adjust the execution options of Model Task are System Arguments. 
Developers can assign these System Arguments to Input Arguments of the 
Model to use the preset execution options. The followings are the descriptions of 
System Arguments.

Basic Arguments 

Argument
Name

Argument Description
Data

Type

#experiment
Name of experiment that Model execution's output is
created. Default is "Experiment 1"

string

version-no
Model's version name (Default format : {model-name}-
{yyyyMMdd-HHmmss})

string

model-name
Default name for versionNo when there is no versionNo
entered

string

https://www.notion.so/experiment-9ddff6bd0fac493daac08d0c0e653ed2
https://www.notion.so/version-no-c8b3cfb97cc841b2a3d6888e75daaadb
https://www.notion.so/model-name-56ab07738230439aab1dc2ca8a792bfc


MOZART Management Console(ENG) 33

Argument
Name

Argument Description
Data

Type

start-time Task starting time (Simulation clock) DateTime

end-time Task completion time (Simulation clock) DateTime

period Plan&Schedule period float

period-unit period configuration unit (default : day) string

#start-
time.AdjustMinutes

Input variable to adjust starty time tp job execution time int

#model-file Full path of the vModel file string

#model-dll Full path of the model dll file string

#model-config Full path of the model configuration file string

Data Download/Upload Arguments 

Argument Name Argument Description Data Type

#overwrite_result
Option whether to overwrite result or
not.

boolean

#use-database
Option whether to use database or not.
(Input data download)

boolean

#save-database
Option whether to save output data to
DB or not.

boolean

#db-to-file

Option whether to synchronize
database without running simulation.
(default value = false) : Input data
download

boolean

#file-to-db

Option whether to synchronize
database without running simulation.
(default value = false) : Output data
save to DB

boolean

#db-includes

File name containing the list of tables to
synchronize input data to the database.
The tables not listed will not be
synchronized.

string

https://www.notion.so/start-time-9b6fac3500b94b83a1f1cc8675c1bb1d
https://www.notion.so/end-time-1779a01b2cc54447bfc7578b7f0eec4c
https://www.notion.so/period-385e283c4db64717aff99bdc4036b4c8
https://www.notion.so/period-unit-1b3ce468fcf64208a484fac6789c2135
https://www.notion.so/start-time-AdjustMinutes-a16190fbf3d74497a9beedc61cd81d5c
https://www.notion.so/model-file-d1e4436c0b974f5db536a23ced7f943a
https://www.notion.so/model-dll-dc1773cb809242309daa957cd4902e48
https://www.notion.so/model-config-a21e355edbfc4eb6989b9db6d460ec74
https://www.notion.so/overwrite_result-8a13e3baff7e448e9425e019cbc353ee
https://www.notion.so/use-database-e40bdde748424d60aa976d9d735ddff1
https://www.notion.so/save-database-922454136153485281b40591905123fc
https://www.notion.so/db-to-file-32e468b1ac56419b9b1c1e6f94f06904
https://www.notion.so/file-to-db-3c89b3a1d52a41488fc568dc9bc21c66
https://www.notion.so/db-includes-482cbbbd4cb64598b777c5d0c2584a37


MOZART Management Console(ENG) 34

Argument Name Argument Description Data Type

#db-excludes

File name containing the list of tables
not to synchronize input data. All tables
except for the target tables will
synchronize and if there is same table
entered in #daction_includes, the
following table will not be excluded.

string

#daction_excludes

A checked-box drop-down list of Output
DataItem to exclude DataAction
execution during the Save DB phase.
The selected DataItems will not perform
DataAction regardless of their activation
condition. This option cannot be used
together with #daction_includes .

string

#daction_includes

A checked-box drop-down list of
OutputDataItem to execute the
DataAction during the Save DB phase.
Only the selected DataItems will
perform DataAction and unselected
DataItems will not perform DataAction
regardless of their activation condition.
This option cannot be used together
with #daction_excludes .

string

#daction_excludes/in

A checked-box drop-down list of Input
DataItem to exclude DataAction
execution during the Persist-In phase.
The selected DataItems will not perform
DataAction regardless of their activation
condition. This option cannot be used
together with #daction_includes/in .

string

#daction_includes/in

A checked-box drop-down list of Input
DataItem to execute the DataAction
during the Persist-In phase. Only the
selected DataItems will perform
DataAction and unselected DataItems
will not perform DataAction regardless
of their activation condition. This option
cannot be used together with
#daction_excludes/in .

string

https://www.notion.so/db-excludes-6ef02a8d3f144b6fb00fe1a970fa7f3d
https://www.notion.so/daction_excludes-152d68988175464d8e2b311c6464d6c1
https://www.notion.so/daction_includes-68f37016d732470390929612c6ba3728
https://www.notion.so/daction_excludes-in-10c86c178f3144fe9fcc68daa2d5ae32
https://www.notion.so/daction_includes-in-e4965e6fb1e242598fbc1085d4b965a8


MOZART Management Console(ENG) 35

Argument Name Argument Description Data Type

#dataSource-set-
default

Sets the connection string to use as
default from the model. The key is the
name of the data source and the value
is the name of the connection string. In
case multiple connection strings need
to be set the delimiter is semicolon (;).

Dictionary<string,string>

#datasource-set-
default-exception

Indicates whether to raise an exception
in case the connection string specified
in  #dataSource-set-default  could not be
found.

boolean

Logging/Performance Arguments 

Argument
Name

Argument Description Data
Type

#log-dir
The relative path (Working Directory\Logs) to save the trigger
execution log files.

string

#log-level Sets the log level. (Verbose~Fatal) string

#performance-
profiling

Indicates whether to aggregate the performance of the model
execution (default = true ). Trigger Execution Log information
will not appear from Triggers and Monitoring if false .

boolean

Run Arguments  

Argument
Name

Argument Description Data
Type

#more-
runs

Repeat count of Model execution. int

#more-
config-
[runindex]

This variable is used to configure the argument's value for each
repeated execution. If not designated, the argument value of the
previous occasion is used. This is automatically created by MMC

string

#run-
index

The current repetition's index. This is automatically created by MMC. int

https://www.notion.so/dataSource-set-default-35bf4b2033ce4adcaa1e95e7e970de36
https://www.notion.so/datasource-set-default-exception-3e08e889f07b45f887543cc673201ce3
https://www.notion.so/log-dir-d6fdeb882bb54766b26bbd8e3f711c13
https://www.notion.so/log-level-5dfdeb28c28d4fea98d6652611c031b5
https://www.notion.so/performance-profiling-4df5eaccdb144a02b2ffc2b5944bb6ac
https://www.notion.so/more-runs-2f99323433c648348186cf7a7d0b2ce4
https://www.notion.so/more-config-runindex-c423d02a89d6425e9724958aa753ad8c
https://www.notion.so/run-index-e8a52edab1f24f1faf36767d95fad690


MOZART Management Console(ENG) 36

Temp Folder Run Arguments 

Argument
Name

Argument Description Data
Type

#use-run-
dir

Indicates whether to create a temporary folder to execute the
trigger. For more details see here.

boolean

#max-
run-dir

Sets the maximum number of temporary folders to maintain. The
oldest folder will be deleted when the number of folders created
exceeds the number set in this argument.

int

#use-
parent-
path

Indicates whether to use the most recently created temporary folder
of the reference trigger when the dependent trigger executes. This
argument is valid when #file-to-db  is set as true.

boolean

Zip Model Arguments
These Arguments are used to configure rules for making a compressed file(like 
ZIP file) from an executed Model.

Zip Model Arguments 

Argument Name Argument Description Data
Type

#create-csv-files

Indicates whether to additionally create CSV files of
Input and Output data during zip compression. When
the task is performed with this option enabled, both
vdat and csv format files will be created inside each
Data and Result folder. See here for an example.

boolean

#zip
Option whether Model is compressed after simulation
is completed.

boolean

https://www.notion.so/use-run-dir-c914c1efaaa2406bb187d3adc23da3ee
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4b74fd9214a54445aaeae22853949898
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4b74fd9214a54445aaeae22853949898
https://www.notion.so/max-run-dir-fbe33692f40649438a0c1ccb01c489f8
https://www.notion.so/use-parent-path-77059f80aa434a779d42f8f7a1b4e887
https://www.notion.so/create-csv-files-045a7feee0d24642b95f068632cb7f71
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ed2912cfccd04ab4b23f1f5e553365d6
https://www.notion.so/zip-b9837493604f4fe5b4b69041935271a9


MOZART Management Console(ENG) 37

Argument Name Argument Description Data
Type

#zip.Use7z

Indicates whether to compress the model execution
result in a 7-zip format or not. This option can be used
only when #zip=true . 7-Zip compresses to 7z format
30-70% better than to zip format. Due to the high
compression ratio, the compression speed is slower
than the zip method. Using this option may result in
increasing the task runtime.

boolean

#zip.Path

The path to create compressed file. If not set, the file
is saved where Model files are located. The folder is
created as a relative path to Working Directory or else
Working Directory itself will be used.

string

#zip.FileNamePostfix Postfix for compressed file name string

#zip.FileNameTempate

Template to save the name for the compressed file.
Default template is
"${Model_name}_${zip_now}${zip_postfix}" The
followings are the allowed keywords to be used. •
${Model_name} : Name of Model • ${now} : Time
when compression begins (DateTime) • ${zip_now} :
Time string (format : yyyyMMddHHmmss) •
${zip_postfix} : postfix used for compressed file name
• ${version-no} : Model's execution version name •
${start_time}: Plan start time (format:
yyyyMMddHHmmss) • ${end_time}: Plan end time
(format: yyyyMMddHHmmss)

string

#zip.UpdateToRecent

Indicates whether to overwrite the current model
execution result to the most recently created zip file or
not. If true , the contents inside the most recently
created zip file will be overwritten with the current
model result. The name of the zip file does not
change. If #zip.FileNameTemplate begins with
yyyyMM format, new compressed file is created with
the name of the most recently-compressed file that
has the same year and month.

boolean

Hosting Arguments

https://www.notion.so/zip-Use7z-5666e69a9a6948f9ab82d55f55976e0b
https://www.notion.so/zip-Path-4bc8dff84743433f8f51db85b795f6ce
https://www.notion.so/zip-FileNamePostfix-b6b15f8888524d81bd7dcedf70f39ea9
https://www.notion.so/zip-FileNameTempate-f60438bc3f0d4c1e8dd44d7d08c80542
https://www.notion.so/zip-UpdateToRecent-80ab7d30d9ba4f399716b1d428df3f74


MOZART Management Console(ENG) 38

The arguments listed below relates to the setting for hosting job/trigger from 
different Mozart server versions.

Hosting Arguments 

Argument
Name

Argument Description Data
Type

#host-dir
This argument is to set the relative path of the mozart server located
in the WorkingDirectory to execute the trigger from a different version
from the mozart server installed currently. For more details, see here.

string

#host-
version

This argument is to set the version of the moart server to execute the
trigger from a different version from the mozart server installed
currently. This argument works as same as #host-dir but instead of
locating the mozart server DLL files to the working directory, this
argument finds the DLL files of the specified version from the
Execution folder. When #host-dir and #host-version is set at the same
time, the trigger will be hosted from #host-version. For more details,
see here.

string

Shortcut

Shortcut acts a medium for file exchanges among MMC and server. MMC should 
be able to add/modify/delete a specific Directory and/or File as a management 
tool for MOZART Server. However, not all folders can be accessed due to 
security and management issues. MOZART's operating/management personnel 
can refer to only the path that is subordinate to Working Directory in MOZART 
Server through MMC. The following figure shows the concept of Shortcut.

https://www.notion.so/host-dir-c70c56b3707747f397e0cc4c1d9d260d
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ba956f8cd3d14e18b274152a42237ddb
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ba956f8cd3d14e18b274152a42237ddb
https://www.notion.so/host-version-b077bac1c69242dcb228478a24b21b87
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#3b2aeff9eab84a4490f60c0fedeb7495


MOZART Management Console(ENG) 39

MOZART Server operator can register Shortcuts mapped to main management 
folders of the servers registered to MMC's Server Explorer. The files can be 
uploaded and inquired through Shortcuts.

To see how to use Shortcut, refer to How to manage Shortcut.

Managing Shortcut

Shortcut a method for MMC users to access server folder (Shortcut concept). 
The Shortcuts are managed through Server Explorer.

Adding a Shortcut
1. In order to add a Shortcut, select a server node as the target to access.

2. Add a Shortcut by clicking [Add Shortcut] of pop-up menu or clicking  icon 
at the top of Server Explorer.

3. Input each item in New Shorcut dialog.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b86d7d108faa40ebbc9d43963e7184e0
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#377c199c1c61413b846c70003cf3a863


MOZART Management Console(ENG) 40

Shortcut name : Shortcut ID. This is the name of displayed Shorcut.

Shortcut Directory : Server folder that Shortcut is mapped on. Select a 
Server folder by using [...] button at the right side. WorkingDirectory is 
the designated folder when MOZART server is installed. Shourcut can be 
created only in Working Directory.

Description : Description of Shortcut.

4. The created Shortcut can be accessed by executing [Open] command in 
pop-up menu or double-clicking the shortcut. This is similar to Windows 
Explorer and the folders subordinate to the correspond Shortcut can be 
explored.



MOZART Management Console(ENG) 41

Modifying a Shortcut
1. Select a target Shortcut that will be modified and execute [Edit Shortcut] in 

pop-up menu.

2. Modify input item when the above Shortcut is added. Modify the name and 
Directory, etc.

Deleting Shortcut
1. Select a target Shortcut that will be deleted and execute [Delete Shortcut] in 

pop-up menu or click Shortcut delete icon [버튼이름] in Server Explorer. Then, 
the Shortcut will be deleted.

Configuring Server default Shortcut



MOZART Management Console(ENG) 42

The shortcut information is designed to be set separately by each user and use 
PC . However, if a Shortcut is shared in Server for common use by all MMC User, 
this can be configured in Server. Refer to Installing MOZART Server/Configure 
Default Shortcut.

MOZART Server Installation

Feature Description
MOZART Product Configurator, a new feature, has been included to support 
MOZART product installation and update. MOZART Product Configurator is used 
in MOZART Server product and Domain Library for server product only. This 
feature will be expanded to support client products in the nearest future.

Feature Background
In general, most server products must guarantee, and in case a version update 
occurs, the best is that the operation or the services on the server side does not 
get affected or suspended during the update is performing. Also, only the target 
components should be updated instead of the entire update.

The previous version of MOZART Server had the problems mentioned above, 
and even when a minor update is performed, all of the services related to 
MOZART Server had to be suspended and restarted until the update is 
completed. As for major updates, the actual DLL files that needed to be updated 
were not many, but all the files were replaced with the newer version, which 
requires reassessment for stability.

From 2019.115.000.0 version, the structure of MOZART Server product has 
changed to overcome the stability problems by 1)separating and reconstructed 
the services to give no influence among each other services, and 2) divided 

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#ea9830fd6bb546cbb8b4d97c13620b19


MOZART Management Console(ENG) 43

file/folder composition in order to update only the required files without 
affecting the service operation.

MOZART Product Configurator is the feature to support the update and 
installation of the MOZART Server product mentioned above.

Feature Composition

1) MOZART Server Installer
MOZART Server Installer The following figure shows the composition of 
MOZART Server installation files when MOZART Product Configurator is used.



MOZART Management Console(ENG) 44

MOZART Product Configurator controls the task such as installation, update, and 
configuration. The installation process did not change from the previous versions 
and still uses msi  file to install MOZART Server. However, during this time the 
installed components will not be MOZART Server, but the features in Install Data 
and MOZART Product Configurator is installed.

The components such as Server and Domain Library are provided as Install 
Data and each of them is individual components which could be selected by the 
users to be installed. The MOZART Product Configurator is used to select the 
Install Data to install and provides a feature called Configurator to apply user 
configuration for each of the components after installation, and have control to 
start/stop the services.

One of the features in MOZART Product Configurator is that after the initial 
installation, there is no need to reinstall the product when there is an update. 
Instead, users can select the Install Data of the components to be updated. The 
following image shows how the services and Domain Library is updated using 
Install Data.

The services used for operating MOZART Server can be rollbacked to the 
previous version at any time through MOZART Product Configurator once 
updated has been proceeded. In the other hand, when there is an update for 
Domain Library, the old version will remain for other purposes, and the new 



MOZART Management Console(ENG) 45

version will be installed in a separate folder using the version as the name of the 
folder. The reason is that the vmodel  and the task DLL in the server can be 
executed from other versions than the latest version using #host-dir  until the 
compatibility of the latest version is guaranteed to operate the server with the 
vmodel  and task dll built from the newer version.

2) Folder Structure after MOZART Server and 
Install Data Installation
Install Data is a set of MOZART product components which could be installed 
through MOZART Product Configurator. The file extension of the Install Data 
is mdz  (MOZART server Install Data Zip) and each of the mdz  files has each own 
specified file composition inside. Since the file composition is specified for each 
purpose, the folder structure of MOZART Server is also specified and categorized 
by each of the components. The following image illustrates the file/folder 
structure of the MOZART Server after installation completed using MOZART 
Server Installer(msi) and MOZART Product Configurator.

The files/folders of the MOZART Server is installed into %ProgramFiles\VMS\Server  
as it did from the previous versions. However, the files for each MOZART Server 
service components and domain library files are not copied to one single folder, 
instead the folders are separated and categorized by each of the components. 
The following shows the name of folders created when each of the components 
is installed.



MOZART Management Console(ENG) 46

[Service Component] Contains the folders related to server services used to 
operate MOZART Server. The followings are the name of the folders created 
when service components are installed. 

MozartServerService : Consists of the services such as OutFileService  
which enables to download the model result zip files from MOZART Studio, 
LicenseService  to activate the license of products such as MOZART Studio, 
and TriggerJobService  which provides the interface allowing the users to 
define logic to execute triggers out from MMC.

MozartManagementService : Consists of the services such as 
DeployManagementService , responsible for file deploy scheduling and 
configuration management(changeset), DeployAgent  providing the service to 
download/upload files through MMC, and JobService  which provides the 
information of the Job/Trigger to the JobScheduler  service and stores the 
argument setting information of the Job/Trigger.

MozartJobScheduler : The JobScheduler  service which executes the task of 
Job/Trigger registered in the server.

[Execution] The Execution  folder contains the folders/files of the domain 
library by each version. For instance, if the General Domain Library  of 
2019.115.000.0 version and SemiconFab Domain Library  of 2019.11X.XXX.X 
version is installed, then inside of the Execution  folder will contain two folders 
named 2019.115.000.0 and 2019.11X.XXX.X in which one will have files 
related to General Domain Library  and the other will contain files of SemiconFab 
Domain Library .

[bin] This folder contains the files to run such as MOZART Product 
Configurator, MOZART Product Activation Tool and etc. 

[CustomConfigs] This folder is created inside of %ProgramData%\Mozart  which 
contains the configuration files created from MOZART Product Configurator 
when configuration setting for each MozartServerService , MozartManagementService  
and MozartJobScheduler  is made. 

[PackageBackups] The folder is created under %ProgramData%\Mozart  where the 
older versions of service component Install Data files are backed up and stored 
when a newer version of the service components are installed. The files in this 
folder is used for rollback in MOZART Product Configurator



MOZART Management Console(ENG) 47

How To Use
This section describes how to use MOZART Product Configurator to install 
MOZART Server and Domain Library.

1) How to Install MOZART Product Configurator
There are two ways to install the components of the Install Data. 1)Install 
together with MOZART Product Configurator through MOZART Installer, 
2)using the MOZART Product Configurator to install the Install Data. The 
steps to install as 1) will be explained below in this article.

Download the install files of MOZART Server from the given URL link, unzip the 
file, and follow the steps as below.

1. Copy the mdz  files from the Install Data  folder where MozartServer.Setup.msi  
file is located.

2. After copying the mdz  files to be installed along with MOZART Product 
Configurator, double-click MozartServer.Setup.msi  file to run the installation.

3. Click [Next] button from Welcome Dialog .



MOZART Management Console(ENG) 48

4. Check "I accept the terms in the License Agreement" from the End-User 
License Agreement  dialog and click [Next] button to proceed to the next step.



MOZART Management Console(ENG) 49

5. Select the path to install MOZART Product Configurator. The default path 
is C:\Program Files (64-bit : C:\Program Files (x86) )



MOZART Management Console(ENG) 50

6. Click [Install] button to start the installation.



MOZART Management Console(ENG) 51

7. After installation is completed, check "Launch Configurator" in order to launch 
MOZART Product Configurator. Click [Finish] button to end the 
installation.

8. If the "Launch Configurator" checkbox is checked, a dialog to input password 
to start MOZART Product Configurator will appear after installation is 
finished. The initial password is mozart.



MOZART Management Console(ENG) 52

 Show Password : Indicates whether to show the text of the input password.

2) How to install Install Data Through MOZART 
Product Configurator
MOZART Product Configurator will start once the correct password is entered 
after installation. The following steps explain how to install Domain Library Install 
Data using MOZART Product Configurator. (The mdz  files of Domain Library 
can be installed along with MOZART Product Configurator when placed at the 
same location of Mozart Server Installer msi  file.)

1. A tutorial explaining each of the components will appear on the first 
installation of MOZART Product Configurator. Click [X] button until all 
tutorial is shown. The first screen that will be displayed after the tutorial is the 
Service Monitoring  screen. Click Packages  to change the screen.

2. The list of installed components will show in the Packages  screen. To install 
the Domain Library, click [Select Package File] from New Package 
Installation: . Only one mdz  file can be installed at one time.

3. Select the mdz  file to install. The selected component will be shown through 
the Installed Packages  screen and will be on standby to be installed.

4. Click [Install] button to install the component. The installation result history is 
printed through Logs:  on the bottom of the screen.



MOZART Management Console(ENG) 53

5. For updating service component or domain library, repeat the steps from 2~4.

3) Setting JobScheduler and Server Service 
Configuration
Before starting the services of MOZART Server, the location of the 
WorkingDirectory  and other settings should be applied to the configuration files 
first. Each service has its own configuration file and is created inside of %Program 
Data%\Mozart\CustomConfigs . The following explains the steps to set the 
configuration file.

1. If any of the services of MOZART Server is installed, the name of the 
installed service is shown through Configuration . First, move to 
MozartJobScheduler  by clicking the name.

2. In typical cases, all options are deactivated except for WorkingDirectory  
configuration. In case other settings require to be configured, check the 
option to change and apply the value.

3. Next, move to MozartManagementService . The changes made for the service is 
saved automatically to the configuration file when moved to another service.



MOZART Management Console(ENG) 54

4. As same as MozartJobScheduler  all options are deactivated except for 
WorkingDirectory . In case other settings require to be configured, check the 
option to change and apply the value. Once all changes are made, move to 
MozartServerSerivce  . The following sample below shows how to set Shortcut.



MOZART Management Console(ENG) 55

After setting the Shortcut , a new folder is created and can be seen from 
MMC. If the Editable  option is checked, files can be uploaded from the 
Shortcut

5.  In MozartServerService , all options are deactivated except for WorkingDirectory . 
In case other settings require to be configured, check the option to change 
and apply the value. The following sample below shows how to configure the 
model result download information App output dir .

4) How to Start JobScheduler and Server Service
Once all the changes are made for each of the services, move to Product 
Management > Service Monitoring . From Service Monitoring , you can start/stop the 
services and monitor the service status. Also, a button to open Windows Event 
Viewer is provided which ables to check more details about the service status. 
The following explains the steps to operate the MOZART Server services.

1. The list of installed services can be found through Service Monitoring . From 
this list, the services can be started or stopped individually or all together at 
the same time. To start or stop the service, select a service and click on the 
mouse right-button to activate the menu to start/stop the service. The 
progress of service activation/deactivation is printed out through Logs:



MOZART Management Console(ENG) 56

When All Task is selected from the menu, the state of all the services will 
change to the selected state. However, the state that could be selected 
depends on the current state of the selected service. For instance, let's say 
the state of MozartManagementServoce is Running  and the state of the other 
services is Stopped  . In this case, when All Task menu is activated from 
MozartManagementServoce , since the selected service currently running, the only 
option that could be chosen is to stop the service. However, the other two 
services are already stopped, so in this case, selecting All Task is 
redundant.

2. Logs:  shows whether the service name registered in the Windows Services 
is running properly or not. However, it is hard to know whether the actual 
services of the service name is running properly or not through Logs: . For 
instance, to check the state of DeployManagementService  and TriggerJobService , 
which are the actual services in MozartManagementService , click [Open Event 
Viewer] button on the bottom of Event Logs: . Then Windows Event Viewer 
will open and will show the state of actual services of the service name.



MOZART Management Console(ENG) 57

3. The access to the directory where MOZART Server is installed can be denied 
due to Windows policy. In this case, the services to operate MOZART Server 
may not start properly. The log on authentication of the service should be set 
to start as Administrator to solve the authentication problem. To set 
Administrator account, start Services.msc  and set the account to the 
properties of each of the services MozartServerService , MozartJobScheduler , and 
MozartManagementService .



MOZART Management Console(ENG) 58

 MOZART Server is installed with the account with Local Services  
authentication. 

In the authority of the directory where MOZART Server is installed is 
higher than Local Services , then the procedure to add the Administrator 
account as mentioned above is required.

5) How to Acquire License Distribution Information
The license of MOZART Studio can be activated from MOZART Server through 
the network connection. When each time MOZART Studio license is activated, 
the information can be found through the MozartServerService  of the Configuration  
section of the MOZART Product Configurator. The following explains what 
each of the columns stands for.



MOZART Management Console(ENG) 59

IssuedTime : The time MOZART Studio licensed was issued. 

Machine : The MAC address of the machine issued with license. 

Product : The name of the product the license was issued. 

name : The user name.

6) How to Remove Install Data and MOZART 
Product Configurator
This section is for those who do not want to continue to use MOZART Server 
anymore and wishes to remove it.

To completely uninstall MOZART Server product, the services of MOZART 
Server and Domain Libraries should be uninstalled first through MOZART 
Product Configurator. Otherwise, MOZART Server service or Domain Library 
cannot be removed if the MOZART Product Configurator is uninstalled prior.

In case MOZART Product Configurator has been removed before MOZART 
Server service or Domain Library, reinstall MOZART Product Configurator as 
described in 1) How to Install MOZART Product Configurator using 
MozartServer.Setup.msi  installation file, to delete the MOZART Server service and 
Domain Library. The following explains on how to uninstall Install Data and 
MOZART Product Configurator.



MOZART Management Console(ENG) 60

1. Go to Product Management > Packages .

2. Select the component to delete from the list in Installed Packages

3. Click [Uninstall] button to remove the selected component. In case the 
component to be removed is a service, and the service state is Running , the 
service will be stopped automatically before removed.

Appendix #1 : How to Activate MOZART 
Server License through MOZART 
Product Configurator
You can check the license status, activate and reactivate the MOZART Server 
license through MOZART Product Configurator. The following shows how the 
license information of the MOZART Server is acquired and how you activate the 
server license.



MOZART Management Console(ENG) 61

Activation Information  shows the current license status. In case more than one 
license is issued, that information will also appear through Activation Information .

You can activate or extend your MOZART Server license through Run Mozart 
Product Activation Tool . If the license activation code is required, please send a 
request mail to support@vms-solutions.com.

How to Upgrade MOZART Server
To know how to upgrade MOZART Server product go to How to Upgrade 
MOZART Server.

How to Update MOZART Server

mailto:support@vms-solutions.com
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#d076a29413114ea79b87a9587e6033b5


MOZART Management Console(ENG) 62

How to Update MOZART Server
This is the user's guide on how to update the version of MOZART Server service 
components (Management Service, Server Service, JobScheduler Service) and 
domain libraries.

Specification Requirement
Affected Version : Mozart Server 2019.115.000.0 and above

MOZART Product Configurator Installed

MOZART Server Service Restart Guide
The following table shows which services of MOZART Server requires restart 
when MOZART Server services, Domain Library, and MOZART Product 
Configurator versions are updated.

MOZART Server Service Restart Guide 

Version Update Component Name Require Service Restart(O/X)

MOZART Product Configurator X

Domain Library X

Management Service O (Management Service only)

Server Service O (Server Service only)

JobScheduler Service O (JobScheduler Service only)

The services of MOZART Server needs restart only when the version of the 
corresponding service is updated. This is because the folders for each service is 
seperated and each service works independently.

https://www.notion.so/MOZART-Product-Configurator-90f5e7001c6445f9942f4a266c6f8815
https://www.notion.so/Domain-Library-580c18388efd43e4a0ca2dffc9334675
https://www.notion.so/Management-Service-1fd052b9110b4af59f033507c0d83d1d
https://www.notion.so/Server-Service-cbf74bd6cb1c4ba6b3950dfb9c8ac6cc
https://www.notion.so/JobScheduler-Service-a7a167afb25347db83c4223aecba04a2


MOZART Management Console(ENG) 63

How to Know Which Components to 
Update
You do not have to reinstall all the components of MOZART Server to update the 
versions. The release note for each version release gives instructions on which 
component requires installation for version update. However, there will be no 
instructions for domain library updates since version update for domain library 
concerns the domain library versions of the client product. So the release note 
provides the version information for domain library and leaves the judgement to 
users whether to update domain library or not.

If you are installing the components of MOZART Server for the first time, please 
install MOZART Product Configurator and then install the components using the 
mdz  files. Otherwise, please check the release note and install the mdz  files of 
the components that require version update.

How to Update the Version of MOZART 
Product Configurator
Warning: Please close MOZART Product Configurator if it is running before 
applying the update. Unknown problems may occur if version update performs 
while MOZART Product Configurator is running.

The steps to update MOZART Product Configurator is as follows:

1. Connect to www.vmsmozart.com from your web browser and log-in. Then go 
to [Product] > [Product Download]. 

2. Select the version to download to your PC from the list. 

3. Select the language(KR/EN) of `Mozart Server_language (Configurator) and 
click [Download] and download [MozartServer] folder. 

4. Run MozartServer.Setup.msi  file from the download folder to start MOZART 
Product Configurator version update.  

http://www.vmsmozart.com/bbs.php?mc=bbs&md=list_test&db=7


MOZART Management Console(ENG) 64

5. Click [Next] button from [Welcom to the Mozart Server Setup Wizard] 
dialog to procceed to the next step. 

6. Read the End-User Licens Agreement and check [I accept the terms in the 
Licens Agreement] to continue the installation. If you disagree with the 
terms, the installation will not proceed. After agreeing with the terms,click 
[Next] button to continue. 

7. Configure the directory to install the update. Click [Change...] to change the 
directory from the default path. Otherwise, click [Next] button to move to the 
next step. 

8. Click [Install] from [Ready to install Mozart Server] dialog to start the 
version update of MOZART Product Configurator.

9. After install is complete, click [Finish] button to close the install wizard 
window complete the installation process. If you want to run MOZART 
Product Configurator after installation, check [Launch Configurator] before 
closing the wizard. 

How to Update/Rollback the Version of 
MOZART Server Services
The procedures to update/rollback Management Service , Server Service , and 
JobScheduler Service  are the same.

How to Update the Version of MOZART Server 
Services
The steps to update the version of MOZART Server Services are as follows:

1. Follow the steps 1~2 of How to Update the Version of MOZART Product 
Configurator. 

2. Select the language(KR/EN) of Mozart Server_Lnaguage Install Data  and click 
[Download] . Downlaod JobScheduler.mdz , ManagementService.mdz , 
ServerService.mdz  files. 

3. Run MozartProductConfigurator.exe . The file is in the path where MOZART 
Server is installed.(i.e C:\Program Files (x86)\VMS\Mozart\Server)

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#d076a29413114ea79b87a9587e6033b5


MOZART Management Console(ENG) 65

4. Input password from the log-in window and click [OK] button to access to 
MOZART Product Configurator. (Init Password : mozart)

5. Go to [Service Monitoring] and stop the service to perform version update. 
To stop the service, Select service> Mouse right button click > Select 
[Stop]. 

6. Go to [Packages] and click [Select Package File] button, and select the 
mdz  file from the file explorer to perform the update. Only one mdz  file can be 
selected and installed at one time.

7. Once the mdz  file is selected, click  [Install] button to install the update.  

8. After install is complete, go to  [Service Monitoring] and restart the service. 
To restart the service  Select service> Mouse right button click > Select 
[Start].

How to Rollback the Version of MOZART Server 
Services
The steps to rollback the version of MOZART Server Services are as follows:

1. Run MozartProductConfigurator.exe . The file is in the path where MOZART 
Server is installed.(i.e C:\Program Files (x86)\VMS\Mozart\Server)

2. Input password from the log-in window and click [OK] button to access to 
MOZART Product Configurator. (Init Password : mozart)

3. Go to [Service Monitoring] and stop the service to perform version update. 
To stop the service, Select service> Mouse right button click > Select 
[Stop].

4. Go to [Packages] and click [Rollback] of the service to rollback to the 
previous version. 

5. After rollback is complete,go to  [Service Monitoring] and restart the 
service. To restart the service  Select service> Mouse right button click > 
Select [Start]. 

How to Update Domain Library Versions



MOZART Management Console(ENG) 66

When you install domain library, the installer creates a folder structure 
[Execution] > [Version Number] in the location specified in Execution Path:  of 
MOZART Configurator for Server. This means that when you perform update for 
domain library, the installer does not overwrite the files of the previous version, 
instead creates a folder using the version number to be installed as its name and 
copies the DLL files. By this way, you can manage and operate the domain library 
of MOZART Server by their versions. In other words, you can run vModel and 
engine DLL files built from different client versions from a single MOZART Server.

The steps to update the version of domain library are as follows:

1. Follow the steps 1~2 of How to Update the Version of MOZART Product 
Configurator. 

2. Select the language(KR/EN) of Mozart Server_Language Install Data  and click 
[Download] . Downlaod the domain library files to install. 

3. Run MozartProductConfigurator.exe . The file is in the path where MOZART 
Server is installed.(i.e _C:\Program Files (x86)\VMS\Mozart\Server) 

4. Input password from the log-in window and click [OK] button to access to 
MOZART Product Configurator. (Init Password : mozart)

5. Go to [Packages], click [Browse] button on [Execution Path: ], and set the 
path to install the domain library files.

6. Click [Save] button to save the domain library install location information and 
to complete the setting.

7. Go to [Packages] and click [Select Package File] button, and select the 
domain library mdz file from the file explorer to perform the install/update. 
Mupltiple mdz files can be selected.date. 
8. Once the mdz  file(s) is selected, click  [Install] button to install the update.

Introduction of Project and Deploy 
Management

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4bf820f364c14189bf9a8c691c0fb143
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#4bf820f364c14189bf9a8c691c0fb143


MOZART Management Console(ENG) 67

Processes and policies in manufacturing plants usually do not flow consistently 
from the initial stage, but keep changing over time. For responding these 
changes, it is essential to update Task dll and vmodel files registered in the 
server. Because servers refer to these files when executing tasks, unexpected 
errors may occur if the file is changed arbitrarily while the engine is running. Even 
if the Job / Trigger is activated according to the scheduled time or event and the 
end time can be expected, a human mistake can occur. In addition, from the 
viewpoint of the server management, it is difficult to manage the history and 
respond to urgent situations such as rollback unless the administrator care about 
the history because servers refer to the dll and vmodel files registered in the 
user-specified Working Directory.

To resolve above problems, MOZART Management Console (2.0) Client and 
Server products provides DeployManagement Service, which allows users to 
manage files on a project basis and schedule distributions by checking whether 
jobs / triggers are performed. The following descriptions are about the 
introduction of project management and scheduled deployment.

Project Management

Project is a management element that manages dll and vmodel files, the 
engine execution log, and the result files of the task by mapping Job/Trigger. 
A project is operated through Server's DeployManagement Service, and the 
information related to project is stored in DeployManagement DB(database) 
file. By saving the information in the database, the management of project is 
available and administrators don’t need to manually manage the version 
even if the change occurs in the project. The below figure is about the way to 
distribute files through projects.



MOZART Management Console(ENG) 68

When distributing files by MMC, files are not uploaded directly to the Projects 
folder. When users set up a distribution schedule for files and commit it, the 
information of changes and folder (Changeset) are created. The changeset 
information is saved in the DeployManagement.db file and files to be 
deployed are uploaded to the Changeset folder and waiting for the 
deployment time. At that time, triggers are checked by communicating 
between DeployManagement Service and JobScheduler. When triggers end, 
files stored in the Changeset folder are uploaded to the Projects folder. The 
Changeset folder is created when changes are made and it is managed by 
number.



MOZART Management Console(ENG) 69

File Distribution Scheduling

A job can have multiple triggers. If the distribution of dll and vmodel files 
is needed to the job, it is difficult to distribute all the files with the 
consideration of the end time of the triggers mapped to jobs by person. In 
addition, even if you know that all triggers are terminated, triggers can be 
executed at scheduled times during file distribution and it may cause 
unexpected accidents. To solve this problem, in MMC2, 
DeployManagement communicates between DeployManagement and 
JobScheduler Service. DeployManagement passes the list of files to be 
deployed to JobScheduler and JobScheduler checks the list and returns 
a list of Job / Triggers that use target files. DeployManagement asks 
JobScheduler to limit the execution of target triggers for file distribution. 
To prevent the distribution failure, the trigger starts at the scheduled time 
during the distribution process. JobScheduler restricts the execution of 
target triggers, and files waiting to be deployed are uploaded from 
Changeset to Projects folder when it is confirmed that target triggers are 
not executed in DeployManagement. After the file distribution is 
complete, DeployManagement asks JobScheduler to release the target 
trigger execution restriction.



MOZART Management Console(ENG) 70

Server & Client Setting Overview

There are 6 services that are operated by MOZART server and these can be 
modified through server setting.

Job Scheduler Service : This is server's Main Service that executes Job 
according to Trigger information registered in Server.

DeployAgent Service : This is a service to exchange files. 
Transfering(upload/download) files among server and MMC is done 
through this service.

OutFile Service : This service provides MOZART Studio with list of 
compressed files of MOZART JOB execution results and to download the 
files to the studio.

License Service : This is a service that MOZART Server issues license 
automatically to MOZART Studio used by general users (Note : Local 
License Service Method)



MOZART Management Console(ENG) 71

DeployManagement Service : This service manages the changeset 
history of Job, Trigger, file distribution and Project of MOZART Server.

TriggerJob Service : It is a service to let users execute triggers from 
other than MOZART Management Console. (i.e. Web application).

When MOZART server is installed, all of the services above are executed. 
Only Job Scheduler is executed as an independent Instance and other 
services are executed in the same instance(Server Service). Configuration in 
Server and client for each service, refer to the corresponding content's pages 
respectively.

1. Configuring Model Download : This explains about Server and 
Client(MOZART Studio) configuration methods for downloading a Model 
from server.

2. Configuring AutoUpdate : This explains how to update Client(MOZART 
Studio - Site's specific Studio (Purchased one)).

Refer to Server Installation Manual for information of Server installation.

Local License Service Concepts

Local License Service is an authentification service that is provided by 
MOZART Server. When the license of MOZART Server is authentcated, the 
server automatically distributes authentication keys to user PC using 
MOZART Studio.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#aa625ed30912429aa98c6624ab2629b7
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#5c80ecc8f7574782846fb7f7379da9ea
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#9494897449924dcb9d0d0a1306fb7460
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#9494897449924dcb9d0d0a1306fb7460


MOZART Management Console(ENG) 72

As seen above, the server providing license service should obtain MOZART 
Server License in advance. Then, newly installed MOZART Studio should get 
a license authentification through Activation Tool when MOZART Studio is 
executed without an issued license information. At this moment, license can 
be issued from Local License Sever by the following procedure.

1. If there is no license, Activation tool shall activate. Click "Next" button to 
proceed.



MOZART Management Console(ENG) 73

2. After setting Activation Option to "Lease a license from MOZART License 
Server", click "Next" button to proceed to the next.

3. Input user name and IP address of the server that has the license 
service.

4. If the license is issued properly, the following confirmation message 
window should be displayed. Otherwise, check if the server connection 



MOZART Management Console(ENG) 74

information is correct or if the service is working fin

The license service is registered to Window Service when MOZART Server is 
installed. If license service is activated for the first time through [Start menu-
>Start Server Service], it is set to start the service automatically from the 
next reboot. Therefore, the administrator(or operator) does not need to 
perform additional settings once the service is started.

Model Download Setting

This section explains the configuration steps to inquire and download the Job 
result files executed from MOZART Server to MOZART Studio.



MOZART Management Console(ENG) 75

Server Configuration
In order to configure Model Download in MOZART Server, the root folder 
that saves the compressed Model files needs to be designated, permission 
granted to delete the Model file from studio and password to delete the 
file needs to be set.

Designate root folder where Download Model in Server is saved 
:[Designating Root Folder] Include the following lines in 
MozartServiceHost.exe.config file(located in the folder where MOZART 
Server is installed) to designate root folder. 
 
1) Configure a Root that a Model executed automatically by 
JobScheduler is saved in 
 
Config Section : <appSettings> 
Key : app-output-dir 
Configuration example :

<appSettings> 
   <add key="app-output-dir" value="D:\MOZARTServer\Models"/> 
</appSettings>



MOZART Management Console(ENG) 76

2) Configure a Root that a Model executed manually by developer or 
operator is saved. 
      
     Config Section : <appSettings> 
     Key : web-output-dir 
     Configuration example :

<appSettings> 
   <add key="web-output-dir" value="D:\MOZARTServer\ModelsManual"/> 
</appSettings>

Configure where a Model in Server can be deleted from a client or not 
and set a password if a Model is deleted. 
 
The compressed Model file in the server can be inquired through 
[File>Download Data From Server] menu in MOZART Studio. The file 
can be deleted from the client and a password is required to delete the 
files. The password can be set through MozartServiceHost.exe.config file 
by including the following lines. The Key and Section could be set 
through here. 
 
Config Section : <appSetting> 
Key : password 
Configuration example :

<appSettings> 
   <add key="password" value="MOZART"/> 
</appSettings>

 * If "password" is not set, the compressed Model cannot be deleted from 
client.

Client Configuration
Client should designate a Server that Model is downloaded from and the 
folder for each Model that is saved in the corresponding server. In order to 



MOZART Management Console(ENG) 77

configure this, first execute OOO_Studio that is purchased by each site and 
use Tool>Options menu.

Select Downloads from the Tree at the left side.

Add Download site to the list at the right side. Press [+] button at the top 
to add the site.

Name : This is a site name that is displayed in a combo box when a 
Model is downloaded.

SubDir : This is a name of a folder where Models are saved in Server. 
This is configured as a relative path with respect to Model download base 



MOZART Management Console(ENG) 78

folder that is configured in the Server.

URL : This is a Service URL for Server that provides Model file download 
service. The format is same as the example above. Input URL that is 
confirmed by user site's operating team. Generally Port and IP 
configuration can be different. This should be checked with the operating 
manager after setting the server.

Multiple sites can be registered and the display order in Download 
window can be adjusted through the arrows at the top.

In order to modify information of the registered site, double-click or use 
[...] button at the top.

In order to delete any added object, use [-] button.

Like the above example, multiple folders in a single server can be registered 
or multiple servers can be registered. After configuring like above, Model can 
be downloaded by using Model search window through [File >Download 
Data From Server] menu from Studio.

When the menu is executed, a list of every registered server name is 
displayed in Download Server combo box like the following figure. Then, 
select a Model file and press download button in order to download a specific 
Model from a list of Models in the selected server.



MOZART Management Console(ENG) 79

AutoUpdate Setting

To update the client version automatically, the update files should be 
compressed and uploaded to the designated user group specified server and 
the client should have the update server connection information. The client 
requests the server for any updates and if the update exists the client will be 
updated. The update procedure is seen through the following figure.



MOZART Management Console(ENG) 80

In a company level, there could be a server machine already existing to 
distribute updates. Whether using an existing server or a new server for Auto 
Update, the server should have IIS installed. The following explains how to 
configure Auto Update server.

[ Server Requriements ]
.NET Framework 4.0 or above

IIS (Internet Information Server) version 6 or above

[How to configure a Server] 
1. Designate a folder where target files for update are saved.

2. Execute "IIS(Internet Information Service) Manager".

3. Add an Application Program Pool from [Application Program Pool -> 
Add Application Program Pool] menu. Set .Net version to 4.0  (The 
name of application program can be defined as you wish. EX) 
MOZARTUpdateServer)

4. Add an Application Program from [Site ->  Default Web Site -> Add 
Application Program] menu. Input value can be set as below.



MOZART Management Console(ENG) 81

Alias : Input an alias for the application program to be registered. 
Alias is the name required when a Server URI is entered in 
client. When Download URL value is configured in client, an 
input format like "host address/[alias]/manifests.xml" is used.

Application program pool : Add Application Program Pool by 
clicking [Select] that was included from Step 3.

Actual path : Designate a folder where target files for update is 
saved as explained in Step 1.

5. Edit Mainfest through MainfestEditor. The file is located in [Update]r 
where MOZART Client installed. Please refer to How to edit Manifest 
file, to find more details how to edit Mainfest.

6. An xml file will be generated. Copy the generated xml file to the update 
target folder. When this is done the setting on server side is completed.

The port used from Default Web Site should be opened. In general, the port 
number is 80 but it could be blocked according to the server setting. Error 
may occur when the port is blocked so make sure to check the port setting 
during server configuration.

[How to configure client]
1. On the client side, AutoUpdate and Update Server can be configured 

through [Tool>Options] menu in the Studio. 

2. Each configuration item can be configured as below.



MOZART Management Console(ENG) 82

Auto update : If checked, auto update is automatically activates 
according to the following input information. If not checked, auto 
update is deactivated.

Application Id : Unique ID of Studio program. User should not 
modify this. When this is compared with Server's manifests file, only 
update information for target Application is compared.

Download URL : Update Server's URL. The format should follow as 
below. 
+ format: http://[SeverIP]/ [Alias of Application program used when 
Server is configured]/manifests.xml 
+ [ServerIP], [Alias of Application program used when Server is 
configured] are required to be edited. Configure the corresponding 
part after checking it with Client UI Development/Operating 
organization.

Downloader : Select a Downloader. Default is BITDownloader.

Parameters : Parameter used for Server authentication. This part 
does not need to be modified.

3. When Studio is restarted after items are configured, the following 
download window is activated.



MOZART Management Console(ENG) 83

Skip this version : Skips to check for any updates on the next start.

Remind me later : Asks to update the version on the next start.

Update : Download, updates the version and restarts the Studio.

Manifest Editor

Manifest Editor

Manifest Editor is an editor for creating/editing Manifest file. When MOZART 
Client is installed, ManifestEditor is also installed in Updater folder 
subordinate to MOZART's installation path.

1. Run ManifestEditor.exe from the folder where server execution file is 
located. MainfestEditor consists of four tabs as shown below.



MOZART Management Console(ENG) 84

2. Fill in the information through Mainfest Properties Tab.

ManifestId : This has the same ID as the distribution ID that is 
changed whenever a new update file is distributed. Client discerns 
whether AutoUpdate should be executed or not by comparing the 
corresponding ManifestId's value. New GUID can be created through 
[Generate] button at the right side. It should be changed during each 
distribution. (※xml document key = manifestId)

Title : Name of the corresponding Manifest file (※xml document 
key = title)

Version : Version of the distributed product. When it is distributed, 
update is executed according to its rule. (※xml document key = 
version)

Release Note : Brief notifications about the fixes in the distributed 
version. This is updated according to the distributed contents. (※xml 
document key = description)

Example of Manifest file

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd
="http://www.w3.org/2001/XMLSchema" 
manifestId="{AF7A3BD5-10A1-4155-BBF8-631906D86DAE}" mandatory="False" xmln
s="urn:schemas-microsoft-com:PAG:updater-application-block:v2:manifest"> 
  <title>FP Studio</title> 
  <version>1.0.3</version> 
  <description>first release</description> 



MOZART Management Console(ENG) 85

  <application applicationId="{3A8F794F-D23A-484D-B766-98581D801DFD}"> 
    <entryPoint file="FP_Studio.exe" parameters="" /> 
    <location>.</location> 
  </application> 
  <files base="http://xxx.xxx.xxx.xxx/MOZARTUpdate" hashComparison="No"> 
    <file source="update-files.zip" transient="No" /> 
  </files> 
  <activation> 
    <tasks> 
      <task type="MOZART.AutoUpdater.ActivationProcessors.WaitForApplicati
onExitProcessor, MOZART.AutoUpdater" name="WaitForApplicationExitProcesso
r" /> 
      <task type="MOZART.AutoUpdater.ActivationProcessors.ApplicationDeplo
yProcessor, MOZART.AutoUpdater" name="ApplicationDeployProcessor" /> 
    </tasks> 
  </activation> 
</manifest>

The above example can be found from [MOZART Client 
folder>Updater>Server] in manifests.xml file.

3. Fill in the information through Application Properties tab. 
This configures information of applications to be updated. The mandatory 
configuration items are seen below.

Application Properties
ApplicationId : This is a GUID of main update program and uses 
GUID in App.config file of the corresponding target file. Two Guid 
should be always configured with the same value. (※xml document 
key = application/applicationId)



MOZART Management Console(ENG) 86

Location : The location where the downloaded file is saved. (※xml 
document key = application/location)

Entry Point
File : Name of execution file. For instance, if update for FP_Studio is 
configured, the name should be set as 'FP_Studio.exe'. (※xml 
document key = application/entrypoint file)

Parameters : Parameter configured at execution. Seperate 
parameter is not necessary for Studio update.

Files
Files URI : To set URI where downloaded files are located. In 
general, the path set in local host is used for the server. (※xml 
document key = files/base)

Source Folder : A local folder where the files are stored is selected.

Files : The section to input files to download from local folder. In 
normal cases, the compressed updated file is selected. (※ xml 
document key = files/source)

4. Fill in the information through Activation Process Tab 
Select the processor to be used for update. Multiple processors can be 
selected.



MOZART Management Console(ENG) 87

Enter Processor Name and select a Processor Type. Then, add the 
Processor by clicking [Add] button.  Processor Types can be seen below. 
Several processes can be registered together. The processors for auto 
update of MOZART Studio is Application Deploy and Wait For Exit. Refer 
to manifests.xml file that is distributed together in server installation 
folder. (※xml document key = activation/tasks/task)

Application Deploy : Copies downloaded files into target folder for 
update. In case of compressed file, it will decompress the file after 
copying is complete.

File Copy : Copy a specific file to a specific location described in 
config file.

File Delete : Delete files with a specific format in a specific location 
described in config file.

Folder Copy : Copy a specific folder to a specific location described 
in config file.

Folder Delete : Delete a specific folder describe in config file.

GAC Util : Manage GAC as described in config file using GACUtil. 
(i.e. registration/delete/etc.)

Hash Validation : Compares hash code of a downloaded file 
described in config file with the source file in the server.

Install Util : Manage Service through InstallUtil.

MSI : Install/delete/patch package configured in config file.

Start Application : Restart application after file is downloaded and 
updated.

Uncompress : Decompress a specific compressed file to a specific 
location described in config file.

Wait For Exit : Close client for update and standby until update is 
completed.

Server Management



MOZART Management Console(ENG) 88

MMC enables the job management on multiple servers. To register the target 
server of MMC, MOZART Server should be installed in the corresponding 
server. You can use [Add Server Connection] button in Server Explorer to 
add a target MOZART Server.

Adding Server Connection

1. Click [Add Server Connection] icon([버튼이름])  from the Sever Explorer 
tool bar.

2. Type in the information to add the server connection.

Input name :  Enter the name that the console manager uses to manage 
target server.

Input the computer  : Enter the URL of the corresponding server. The 
format should follow the example shown above but, using the actual IP 
address.



MOZART Management Console(ENG) 89

User ID: Enter the user ID to connect to the MOZART Server. (The 
default administrator account is sa.)

Password : Password: Enter the password required to access the 
MOZART Server. (The initial password of sa account is "mozart".)

💡 Note 
When the MOZART Server is installed for the first time, the 
default administrator account and password are included in the 
Deployment.db file. When accessing the database for the first 
time, you can access it with the default account and password. 
The default administrator account / password is as follows.

User ID : sa

Password : mozart

3. Click [OK] after entering all the information.

4. If a server appears with a name through Server Explorer, the server has 
been created successfully and ends the server registration.

How to Check Server Information



MOZART Management Console(ENG) 90

You can check the detailed information of server registered in MMC Server 
Explorer. In addition to the basic information such as the server name and IP 
address, you also can check H/W specification of Server machine, MOZART 
dll version installed on Server, WorkingDirectory and Backup, and HDD 
capacity status. The below explanation is about how to access Server 
information in the MMC Server Explorer.

How to check server information 
1. In the Server Explorer, right-click the target server for which you want to 

know the server information and click [Server Information] button.

2. Check the server information in the Server Information dialog.



MOZART Management Console(ENG) 91

Connection : This section is used to check the connection 
information of the target server

Server Name : Server name information entered when 
registering this server in Server Explorer

Server Address : The IP address information entered when 
registering this server in Server Explorer

Server Specification : Displaying H/W specification, OS and .NET 
Framework version of the registered server.

Installed Component : You can check the dll version of MOZART 
installed on the target server.

Disk : Displaying the HDD capacity information of the target server. 
Disk only displays the information of HDD where WorkingDirectory 
and Backup are located. (Display unit: GB)

Performance : Displaying the current CPU and memory usage of the 
target server and the number of triggers being executed.



MOZART Management Console(ENG) 92

Trend : In addition to the current usage, you can check the CPU 
and Memory usage status of the target server. When you click 
the Trend button, the Performance Trend Dialog pops up.

Refresh : Refreshing the performance information with the latest 
one.

How to view Performance Trend
If you click [Trend] button in the Performance area at the below part of the 
Server Information Dialog, c the Performance Trend Dialog pops up. You can 
check the overall server resource usage and trigger execution status for the 
specific period based on the current time through the Performance Trend 
Dialog. The following image is an example of MMC's Performance Trend 
Dialog.

Period : Setting the period. The period can be set in hours/days and the 
server status will be drawn before the entered period based on the 
current time.

Average : Displays the average CPU / Memory utilization and Trigger 
execution count correspondent to the configure period.



MOZART Management Console(ENG) 93

When the user sets a specific period, the server status is displayed as a 
graph. The dotted line in the graph indicates the average CPU / Memory 
usage during the period, and the solid line shows the actual CPU / Memory 
usage during the period. In addition, when you mouse over the graph, you 
can see a pop-up window that allows you to check the details of the period.

Downloading & Uploading Local DB 
Files

The Mozart server uses SQLite DB files to save logs for any events or 
actions that occurred from the server. There are three DB files for each 
purpose. 

DeployManagement.db: Contains the changeset logs of Project, Job, 
and Trigger. This DB file also contains the user information to give 
access to Mozart Server via MMC. 

DeployLogging.db: Contains the logs of the resource utilization of the 
server machine.

SchedulerLogging.db: Contains the trigger run-time and execution logs. 

These files could be downloaded through MMC. The downloaded DB files 
should be used for diagnosis purposes such as diagnosing trigger failure. 
Otherwise, re-modification of the content in the DB file should be done only 
when the system could not be recovered without modification. 

How to download the DB files 

1. Right-click the server node from the [Server Explorer] to download the 
DB files from and select [Download Database File



MOZART Management Console(ENG) 94

2. Select the location to save the DB files. 

3. A progress bar appears while downloading is proceeding. Press [Cancel] 
to cancel the download. 



MOZART Management Console(ENG) 95

4. Press [Done] when the download completes. This message appears 
each time a DB file is downloaded. Since there are three DB files, steps 3 
and 4 will repeat until all files are downloaded. 

How to upload the DB files 
1. Right-click the server node from the [Server Explorer] to upload the DB 

files to and select [Upload Database File



MOZART Management Console(ENG) 96

2. Select the DB file to upload from the file explorer. 

3. In case a DB file already exists in the server, a message asking whether 
to overwrite the existing file will appear. Press [Yes] to overwrite the file. 
Otherwise, press [Copy and Rename] to save the file without 
overwriting. 



MOZART Management Console(ENG) 97

The logs are constantly saved to the local DB file while 
Mozart service is running. In this case, the local DB files 
to upload to the server do not contain records since the 
date they were downloaded. To avoid overwriting the 
existing local DB files, we recommend uploading the DB 
files using different names through [Copy And 
Rename]. After then, pause the Job Scheduler and 
perform migration from the uploaded DB file to the 
existing DB file. 

4. A progress bar will appear while DB files are uploading. Press [Cancel] 
in case canceling the upload is required. 



MOZART Management Console(ENG) 98

5. A pop-up will appear when the upload completes. Press [OK] to confirm 
and finish the upload process. 

How to Register Project

In the previous version of MOZART Management Console, users were 
required to create accessible folders through Shortcut in order to upload 
Task model and dll files and to access trigger results and logs. From 
MOZART Management Console (2.0), creating folders to Shortcut are 
unnecessary. When a Project is created, Files/Logs/Result folders are 
created automatically. When the Project is mapped to a Job the logs and 
trigger results will automatically directed to be stored to the Logs/Results 
folders of the corresponding Project. The following describes how to add 
Projects through MMC.

Project Registration
1. Right-click on the Server Explorer -> Projects node and select [Add 

Project].



MOZART Management Console(ENG) 99

2. Enter the information to Input project name and Description textbox, 
and click the [OK] button to save.

Add New Project Information

Input project name : Name of the project to be created. A folder 
with Project name will be created to Projects/Results/Logs 
folders within WorkingDirectory. Project name cannot be edited 
after creation.

Server folder : The project folder to be created in in 
[WorkingDirectory]\{Projects/Logs/Results}\. Users cannot edit 
this item.

Description : Textbox to type in description for the project to be 
created. The Description section can be edited through Edit 
Project.



MOZART Management Console(ENG) 100

How to Edit , Replicate & Delete 
Project

Project Modification
1. Select the Project to be edited among Projects added to Server 

Explorer -> Projects. Right-click and select [Edit Project].

2. Only [Description] can be modified. After editing, click [OK] 
button to save.

Duplicating a Project
There are two ways to replicate an existing Project. 1) [Copy] is a 
function to create a replica of the project, job, and trigger on the local 
server. 2) [Synchronize] is a function to create a replica of the 
project, job, and trigger on the remote server. This page instructs 
how to use the [Copy] function. To learn how to use [Synchronize], 
see here.  

1. Right-click a project in Server Explorer > Projects , and select 
[Copy] from the context menu. 



MOZART Management Console(ENG) 101

2. On the Duplicate project dialog, enter the name of the replica 
and select [OK]. (Default Name: Copy_Project Name)

Once the duplication process is completed, you can see the 
replication of the project, job, and trigger created with the given 
name.   



MOZART Management Console(ENG) 102

Deleting Project
1. Select the Project to be deleted among Projects added to the 

Server Explorer -> Projects. Right-click and select [Delete 
Project].

2. Click [OK] button in the Confirm popup window to delete the 
Project, then the Project folder and files selected in 
[WorkingDirectory] \ Projects will be deleted.

Remove all history of project : This option is to decide 
whether to delete all the histories of the selected Project. If 
the checkbox is enabled, files in ChangeSet folders and data 
in Deploymanagement.db will be removed when the Project 
is deleted.

File Commit and Deploy

Register File

1. In Server Explorer-> Projects node, double-click the Files 
folder of the project for registration or select [Open] from the 
right-click menu.

2. Select the files and folders to be uploaded by clicking [Add] 
button on the top menu. If the file is newly added, "+" is 
displayed next to the file. If it is deleted, "-" and if it is 
changed, a check mark is displayed as shown below.



MOZART Management Console(ENG) 103

Top Menu Button Description

Refresh: Refresh button to update Deploy status of files in 
Files folder.

New Folder: New Folder button to create a folder in Files 
folder.

Add: Add button to register/change files/folders in Files 
folder. If you click the arrow next to the icon, you can choose 
whether to upload the file or folder.

Update: Update button for changing files in Files folder. The 
function is the same as Add, but when you select Update, 
the selected files are only searched in Explorer.

Delete: Delete button to delete the selected file from the 
Files folder.

Commit: Commit button to reflect the above Create Folder / 
Add / Update / Delete.

Cancel: Cancel button to cancel all changes in Files folder.

View History: View History button for viewing all past 
changes in the Files folder



MOZART Management Console(ENG) 104

View History Window

Changeset : It is the changeset number of the Projects. 
Changesets are not managed and created individually by 
Projects. (i.e. Project A : Changeset 1, Project B : Changeset 
1,..). Regardless of the Projects, if commits are made from 
any of the Projects, Changeset number will be increased by 
1 from the previous Changeset. (i.e. Project A : Changeset 1, 
Project B : Changeset 2,..)

Action : This shows the Commit status.

Deploy : Committed files have been deployed and saved 
to the server.

NotScheduled  : Files are committed and stored in the 
Changeset folders, but not deployed to the server yet. .

Deploy > Rollback : Files are rolled back and cannot be 
distributed to the server due to running Job/Trigger. This 
happens when committed files are trying to be 
distributed when nothing is set on Related Items option 
in Deploy Schedule tab while Job/Trigger is still running. 
An error message will be written to Comment column 
when Deploy > Rollback occurs.



MOZART Management Console(ENG) 105

User : Shows the user account that performed Commit.

Deployed Time : The time when committed files have been 
deployed to the server (Format: YYYY-MM-DD hh:mm).

Comment : Comments left by the user during file commit. 
You can modify the comments in the history. Double-click the 
row or select a row to modify and select [Detail]. Then 
another window will appear with detailed information about 
the selected row. Go to the Comment section and modify 
your statement. Select [OK] to save the changes and close 
the detail view window. 

File Commit and Deploy
1. When the file registration is completed, click the [버튼이름]

[Commit] button on the top menu. At this point, you can set 
the time to distribute the files in the Deploy tab.

2. When the setting is completed, click the [OK] button.



MOZART Management Console(ENG) 106

Commit Changes Dialog

Files Tab

Comment : It is used to create user comments on the 
changed point. You can check comments in [View 
History].

Name : File name to be committed.

Directory : Relative path information for [Project Name] 
in [WorkingDirectory]/Projects/path.

Deploy Schedule Tab



MOZART Management Console(ENG) 107

Update Now : Start the distribution of files from the moment 
that you press the [OK] button. If Related Items are specified,
the relevant Job / Trigger will distribute files after execution. 
If Related Items is (NONE) and related Job / Trigger is 
running, the file distribution is canceled and files are rolled 
back

Update after specific time : Distribute committed files to the 
server at the user-specified date and time. Like Update Now, 
if Related Items is (NONE) and related Job / Trigger is 
running, the file distribution is canceled and files are rolled 
back.

No schedule yet : This option is selected when the 
registration / change files are committed but not deployed to 
Server. No schedule yet files can be distributed to the Server 
via Update Now or Update after specific time.

Related Type : Whether to check the related job or trigger is 
terminated when distributing registered / changed files. If 
Related Type is set to Job, it checks whether all triggers 
connected to the selected Job in the Related Items and 
proceeds to the distribution. If set to Trigger, it checks 
whether the selected triggers are executed in the Related 
Items and proceeds to the distribution.



MOZART Management Console(ENG) 108

Related Items : Check whether the registered Job or Trigger 
is selected based on the items set in Related Type.

Kill executing triggers : If the selected Job / Trigger of 
Related Type / Related Items is being executed and Kill 
executing triggers is checked, the job / trigger is immediately 
stopped and distributes files. This option is selected if the 
priority of file distribution precedes triggers.

Synchronizing Project Among 

Mozart Servers

When creating a failover system for MOZART Server, the project, 
job, and the trigger of the backup server have to be the same 
from what is in the operation (main) server. In other words, the 
procedures and steps took to compose the main server have to 
be repeated from the backup server as well to be prepared. 
However, when this task is done through human resource only, 
this may lead to increasing the risk due to human error and 
longtime consumption for preparation.

From 2019.115.000.0 version the feature to support to create the 
backup server for failover is included. The functions that could be 
used are 1)Replicating the project, job, trigger of the source 
server to the target server, 2)synchronizing the source 
server to the target server in case changes are made from 
the source, and 3) leaving logs for the synchronization 
among source and target.

How to Use



MOZART Management Console(ENG) 109

The vModel file or task DLL file can be updated to the operation 
server of the MOZART Server. In this case, the updated files 
should be applied in case a backup server exists. By using the 
synchronization function, the target(backup) server can pull from 
the source(operation) server. The following explains the steps on 
how to use the synchronization function.

1. Connect to the source server from the Server Explorer  from 
MMC.

2. Next, connect to the target server from the Server Explorer  
and then select a project to synchronize from the source 
server. (Ex.SimFailover)

3. Right click on the selected project and select [Synchronize 
Project] from the menu.

4. Click [Mapping] button from the Synchronize Project  dialog to 
select the source server. In normal cases, when the target 
project is created should replication, the source server 
should be already selected.

Source Project : Gets the list of the source server and 
the project to synchronize.

Mapping Triggers : The selected job and trigger to sync, 
which was chosen from the [Mappings] of the Source 
Project .



MOZART Management Console(ENG) 110

5. Once the source server is selected, next select the project to 
pull from the Project  section.

6. When a project is selected, the list of the jobs and the 
triggers mapped to the project will appear on the right side 
panel. Select the job and the trigger to pull from the source 
server.

Overwrite all : Overwrites the existing Job/Trigger, 
schedule and the arguments to the ones from the source 
server. 

Do not overwrite : Does not perform anything.

Synchronize all, except for checked items : 
Synchronize all except for the selected arguments of the 
job and trigger.



MOZART Management Console(ENG) 111

7. Once the settings for synchronization is completed, next, go 
to Sync Schedule  tab from the Synchronize Project  dialog to set 
the schedule to start synchronization.



MOZART Management Console(ENG) 112

8. Click [Synchronize] button to synchronize from the source 
server.

9. Once synchronization is performed, you may check the 
history of the synchronization among the source and the 
target server through SyncProjects  node in Server Explorer  of 
the target server.

Changeset : The unique identification number or changeset 
ID of the synchronization.

Project : The name of the target project that was 
synchronized.

Source Project : The name of the source project.

Job Triggers : The name of the job and trigger 
synchronized. @ is delimiter for job and trigger. (Ex. 
JobName@TriggerName)

Sync Time : The time synchronization was completed.

Comment : The user comment for the synchronization. If 
synchronization fails (State : Fail), an error message will be 
left automatically.



MOZART Management Console(ENG) 113

Model and Data to Temp Folder 
to Run Trigger
This is a guide to run the model of the trigger not from the 
Project  folder, but from a temporary execution folder.



MOZART Management Console(ENG) 114

Argument to Create and Use 
Temporary Folder to Run Trigger
The following table lists the extended arguments in MMC to 
create a temporary folder containing the vModel file and input 
data copied from the Project  folder, and run the Trigger.

Argument to Create and Use Temporary Folder to Run Trigger 

Argument DataType Description

#use-run-
dir

boolean

Indicates whether to use the temporary folder
to run Trigger. (Default: false) The temporary
folder creates under WorkingDirectory  >
Execution > [Trigger Name] > [Executed Time]

#max-
run-dir

int

Specifies the number of temporary folders to
create. (Default: 2) When the trigger run
finishes the temporary folder is deleted. The
value in the argument indicates the number of
the folders to be kept. (i.e If the value is 2, then
the two temporary folders of the recent
executed trigger is left.

#use-
parent-
path

boolean
Indicates whether to use the temporary folder
of the reference trigger. (For dependent trigger
only)

When #use-run-dir = true, a temporary folder is created when the 
trigger executes. The location of the temporary folder is as 
follows.

Temp execution folder location: WorkingDirectory\Execution\
[Trigger Name]\Temp\[YYYYMMDD-HHmmss-random string]

💡 Note 
Please close all temporary folders when the trigger is 
executed. Leaving a folder opened may cause the 
folder not to be deleted especially when the folder to 
be deleted is opened.

https://www.notion.so/use-run-dir-06de0f84a1f14751aed43da1f3fc061b
https://www.notion.so/max-run-dir-87619d7e580d48978377f90043c0e38c
https://www.notion.so/use-parent-path-bac74e8fc9654c09b17211b86dc01d70


MOZART Management Console(ENG) 115

How to Use
The arguments can be set from either Job or Trigger setting 
window of MMC.

How to Set from Jobs/Triggers
1. Run MozartManagementConsole2.exe. The file is located 

in the path where MOZART client is installed (i.e C:\Program 
Files (x86)\VMS\Mozart\Server\bin).

2. Select a server node from Server Explorer. Then, right click 
and select [Connect Server]. 

3. Type the log-in ID and password to [User ID] and 
[Password] box and then click [OK] button to connect to the 
server. 

4. Right-click on [Jobs] or [Triggers] node and select [Open] 
or double-click [Jobs] or [Triggers] node from Server 
Explorer to open the window. 

5. Select a job/trigger from the list and double-click to open 
[Edit Job]/[Edit Trigger] dialog. 

6. Go to [Parameters] and scroll down until you see [#use-
run-dir] and [#max-run-dir]. 

7. Check [#use-run-dir] to create temporary folder and type a 
number to [max-run-dir] box to decide the number of 
temporary folders to maintain.



MOZART Management Console(ENG) 116

Operation Structure
When #use-run-dir  is true  the vModel and input vData files in 
the Project  folder is copied to the temporary folder of the trigger 
when the trigger is executed. The vData files copied to the 
temporary folder are the files that are not to be donwloaded from 
the database. After the files are copied, the model executes from 
the created temporary folder according to the arguments set in 
trigger setting. The data to be downloaded from the database is 
stored in the input folder of the temporary folder.

How to Set Dependent Trigger to 
Refer the Temporary Execution 
Folder of Parent Trigger
When the option to use the temporary execution folder for the 
trigger each trigger will have a dedicated temporary folder of its 
own. This is same for the dependent trigger as well. However, 



MOZART Management Console(ENG) 117

there are cases where the dependent trigger needs to refer the 
execution result from its reference (parent) trigger.

For instance, if the task of the dependent trigger is to save the 
result from its parent to the database, then the dependent task 
needs to get the data result from the parent.

How to Use & Example
Set #use-parent-path  option to true  from the trigger settings in 
MMC, in order to use the model and data in the temporary 
execution folder of the parent trigger. This option is only effective 
for dependent trigger only and will not work on independent 
triggers.

#file-to-db Argument Example

The following example is a dependent trigger using #file-to-db 
argument saving the experiment result of the parent trigger to the 
database.

Scenario



MOZART Management Console(ENG) 118

Trigger A : Main Trigger

Trigger B : The dependent trigger to save the essential result 
data of Trigger A to the database. (Starts task after Trigger A 
finishes)

Trigger C : The dependent trigger to save the monitoring 
result data of Trigger A to the database. (Starts task after 
Trigger B finishes)

Trigger Settings

1. Set #use-run-dir = true  to Trigger A,B, and C.

2. Set #file-to-db  to Trigger B and C ( #save-database  should be 
set as true in advance.) 2. Set Trigger B dependent to 
Trigger A from Basic, then go to Parameters and set #use-
parent-path = true  from Trigger B.

3. Set Trigger C dependent to Trigger B from Basic, then go to 
Parameters and set #use-parent-path = true  from Trigger C. 

4. Run Trigger A and see if Trigger B and Trigger C saves the 
result from Trigger A to the database.

Other Remarks
The operation of #use-run-dir  and #max-run-dir  works differently 
depending on the following arguments set in the trigger setting.

db to file Job : When set true , input data is downloaded to 
Project  folder instead of the temporary folder.

file to db job : When set 'true' the output data from Project  
folder is uploaded to database.



MOZART Management Console(ENG) 119

overwrite job : This argument cannot be used with #use-run-
dir  argument. When set true , the model in the recent made 
temporary folder is executed and no additional temporary 
folder is created

Run Trigger from Another 
Domain/Execution DLL Versions

When the version of the MOZART Server is upgraded, the 
stability of the Job/Trigger execution from the latest version is not 
guaranteed. The stability issue may require operating the 
Job/Trigger of the stabled version until the stability of the latest 
version is guaranteed.

In MMC, users can set the Job/Trigger to run from different 
versions of domain library and execution DLL files other than 
from the latest installed version.

The following table shows the name of the extended arguments 
and descriptions that you can use from MMC to set the 
Job/Trigger to run from different MOZART versions.

Run Trigger from Another Domain/Execution DLL Versions 

Argument DataType Description

#host-
version

string

The path of the domain library and execution
dll files set from Execution Path in MOZART
Configurator for Server. The input value is the
version number of the assemblies for the
Job/Trigger to refer.

https://www.notion.so/host-version-61e4739886ad4e6fa4b7e491a666322c


MOZART Management Console(ENG) 120

Argument DataType Description

#host-dir string

Relative Path: The name of the folder in
WorkingDirectory where the domain library and
execution DLL files are stored. Absolute(Full)
Path: Any location where the domain library
and execution DLL files are stored. The full
path must be typed in.

How to Use
This section explains on how to use #host-dir and #host-version 
arguments in MMC to set the version of domain/execution DLL 
files for the Job/Trigger to refer. You can use either one of them.

In order to use one of these functions, at least two different 
versions of domain/execution DLL files should exist in the 
machine where MOZART Server is installed . 

#host-version
The steps to use #host-version are as follows:

https://www.notion.so/host-dir-a799bbce0b304605a78b9c7c843110db


MOZART Management Console(ENG) 121

1. Run MozartManagementConsole2.exe. The file is located 
in the path where MOZART client is installed (i.e C:\Program 
Files (x86)\VMS\Mozart\Server\bin).

2. Select a server node from Server Explorer. Then, right-click 
and select [Connect Server].

3. Type the log-in ID and password to [User ID] and 
[Password] box and then click [OK] button to connect to the 
server.

4. Right-click on [Triggers] node and select [Open] or double-
click [Triggers] node from Server Explorer to open 
[Triggers] window.

5. Select a trigger from the list and double-click to open [Edit 
Trigger] dialog.

6. Go to [Target Job] and scroll down until you see [#host-
version].

7. Select a version to run the Trigger from the drop-down list in 
[#host-version]. 

8. Click [OK] button to save the changes and close the dialog.



MOZART Management Console(ENG) 122

#host-dir: Relative Path 
(WorkingDirectory)
The folder that contains the domain library and execution DLL 
files need to be placed in WorkingDirectory. Depending on the 
MOZART server versions, these files are located in different 
paths. The following lists the default path where the files are 
located.

2019.3.114.1 and below: %ProgramFiles% or 
%ProgramFiles(x86)%\VMS\Mozart\Server or 
\VMS\Mozart\Server folder in the path assigned during 
MOZART server installation.

2019.115.000.0 ~ 2019.115.100.0: %ProgramFiles% or 
%ProgramFiles(x86)%\VMS\Mozart\Server\Execution\
[Version] or in the \Execution\[Version] folder in the path 
assigned during MOZART Configurator for Server 
installation.

2019.116.000.0 and above: %ProgramFiles% or 
%ProgramFiles(x86)%\VMS\Mozart\Server\Execution\
[Version No] or in the \Execution\[Version] folder assigned 
from Execution Path: in MOZART Configurator for Server.

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.

2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Click [...] button in [#host-dir] box. Then, select the folder of 
the version to host the Job/Trigger execution in Browse For 
Folder dialog and click [OK] button.

4. Click [OK] button in Edit Trigger dialog to save the changes 
and close the dialog. 

#host-dir: Absolute(Full) Path



MOZART Management Console(ENG) 123

When using the absolute path to #host-dir, the specified folder is 
searched only in WorkingDirectory. However, when you set the 
full path to #host-dir, the folder containing the domain library and 
execution DLL files can be located anywhere that you prefer.

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.

2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Type the full path of the folder where the domain library and 
execution DLL files are located in [#host-dir] box.

4. Click [OK] button in Edit Trigger dialog to save the changes 
and close the dialog.

Priority
As mentioned above, to run Job/Trigger from a different version 
of domain library and execution assemblies, you only need to 
configure either #host-version or #host-dir.



MOZART Management Console(ENG) 124

When both #host-dir and #host-version have values, the server 
searches for the existence of the folder in the following order.

1. host-version

2. host-dir (Absolute path > WorkingDirectory)

3. The folder with the highest version number in Execution 
path.

Let us assume that both values are set in #host-version and 
#host-dir. If the folder with the name specified in #host-version 
exists, then the Job/Trigger runs hosted by #host-version. 
Otherwise, the Job/Trigger runs hosted by #host-dir. If both 
folders are not found or no values are set in both #host-version 
and #host-dir, then Job/Trigger runs hosted by the folder with the 
latest version name in Execution path.

The following example has values set for both #host-version and 
#host-dir. The Job/Trigger will run using 2019.115.000.0 version 
DLLs if 2019.115.100.0 folder exists in Execution path.



MOZART Management Console(ENG) 125

Dependent Trigger Example 

Introduction
This section shows an example of how to create a DB monitoring 
task to monitor the status of master data I/O, how to set a 
dependent trigger to link up with the monitoring task, and how 
the dependent trigger executes only when the DB I/O event 
occurs.

When to use Monitoring Trigger 
Here are some cases when monitoring triggers can come in 
handy. 

1. Start simulation or pegging task only when master data is 
updated from DB. 

2. To start a task only when the succeeding task finishes with 
no error. 



MOZART Management Console(ENG) 126

Step 1. Adding Monitoring Table 
In this example, we are going to add a monitoring table to the 
Simulation or Pegging project to write the engine run status to 
the DB. 

1. Create a table in Output DataItem in the simulation or 
pegging project to write the execution result status of the 
model. 

2. Add the table to [Monitoring table] in Output persist config. 
Adding the table to [Monitoring Table] enables writing 
records under any circumstances. For instance, if an error 
occurs during execution, the records at that point are lost 
and could not be written to the table. However, if a table is 
added to [Monitoring Table], the records are written even 
though an error occurs during execution. Only one table can 
be set as [Monitoring Table].



MOZART Management Console(ENG) 127

3. Implement a logic to write the records to the table in Main 
Control > ShutDown  FEAction. 

// Main > Shutdown 함수 구현  
public void SHUTDOWN_0(ModelTask task, ref bool handled) 
{ 
    //Job 수행 결과 기록  
    MonitorTable mt = new MonitorTable; 
    mt.VERSION_NO = task.Context.VersionNo; 
    mt.STATE_TIME = DateTime.Now;  
    mt.STATE = task.Context.HasErrors ? : "FAIL" : "SUCCESS";  
    mt.EXCEPTION = task.EXCEPTION.Message;  
 
    OutputMart.Instance.MonitorTable.Add(mt);  
}

4. Write a query to save the records to the DB for monitoring. 

Step 2. Creating a Monitoring 
Task



MOZART Management Console(ENG) 128

Next, we are going to create a monitoring task to monitor the DB 
and execute the dependent trigger when STATE  is "SUCCESS". 
In this example, you can learn how ReturnIfTrue  execution type 
operates and how ModelContext.Result  is used to determine the 
condition to execute the dependent trigger.

1. Create a Mozart project for the monitoring task. Choose 
either Basic(SeePlan) or the domain library used for your 
system.

2. Add a vmodel and a custom model, then save the project. 

3. Add a data source, then add a connection string to the data 
source to get connected to the DB. 

4. Add a table to [Inputs] and define the columns as same as 
the monitoring table in the DB. 

5. Add two DataActions to the input table. First, add a 
DataAction to run SELECT  query and another DataAction to 
run UPDATE  query. Set SELECT  DataAction as the active 
action.  



MOZART Management Console(ENG) 129

Select query example 

Update query example

6. Implement a code to check the monitoring table status and to 
change the STATE to string.Empty when STATE  is 
"SUCCESS". This is to avoid the monitoring task returning 
true all the time.  Also, implement a logic to forcefully run 
UPDATE  query using InputAccessHelper  class. To use 
InputAccessHelper , you must add Mozart.Task.Model  to the 



MOZART Management Console(ENG) 130

[References] of your project. The following code is an 
example, you can implement the following code to either 
[Main >Run] or [Custom] > [Execute].  

using Mozart.Task.Model;  
//Implement logic to either Main > Run or Custom Execute FEAc
tion.  
public void MONITORING(ModelContext context, ref bool handle
d) 
{ 
    var info = InputMart.Instance.MonitorTable.Rows.FirstOrDe
fault(); 
 
  //Load data from Input table and check whether STATE = SU
CESS.  
   // If STATE = SUCCESS, empty STATE, update the new data to 
DB and set the value of context.Result =true so the dependent 
trigger can execute.  
    if(info!= null && info.STATE == "SUCCESS") 
    { 
          
        info.STATE = string.Empty; 
        info.STATE_TIME = DateTime.Now; 
 
        //Load the model so we can select the DataAction to e
xecute. By this way we can choose when and which query to run 
after Input Persist and before Output Persist.  
        var dir = Path.Combine(context.ModelDirectory, contex
t.VModelName + ".vmodel"); 
        var model = Mozart.Task.Model.ModelEngine.Load(dir); 
 
        var source = new MonitorTable[] {info}; 
        var result = InputAccessHelper.Save<MonitorTable>(mod
el, "MonitorTable","Update",source); 
 
        //result represents the number of rows effected. Sinc
e there will be only one row in the table, set context.Result 
= true when result is bigger than 0. The data type of contex
t.Result is an object, so basically the default value will al
ways be false.  
        if(result > 0) 
            context.Result = true; 
     } 
}

Step 3. Setting Monitoring 
Trigger



MOZART Management Console(ENG) 131

For the third step, we are going to create a Project, Job, and 
Trigger to perform the monitoring task. The following figure 
describes the role of the monitoring task and how it operates. 
The monitoring task will run every minute and check whether the 
table has been updated or not. Once updated, the monitoring 
task passes the result to the dependent trigger. If the result is 
true , the dependent trigger executes. Otherwise, false  which 
will not execute the dependent trigger. 

1. Run MMC and connect to the server to deploy the vmodel 
and dll files. 

2. Open the context menu by right-clicking the [Projects] node 
from Server Explorer. Then, select [Add Project] and create 
a new project. 

3. Upload the vmodel and dll files for the monitoring task to the 
Project and proceed to the next step by pressing [Commit] 
from the upper menu. 

4. Wait until all files are deployed. Once finished, move to 
[Jobs] node and add a Job.  

5. From the [Basic] tab, select the Project, model file, and 
model dll file. 

6. Move to [Parameters] tab, from here make sure #use-
database and #save-database is activated. 



MOZART Management Console(ENG) 132

7. Once all settings are done, move to [Triggers] node and add 
a Trigger. 

8. From the [Schedule] tab, go to [Settings] and select 
[Simple] from the option. 

9. Configure the date and time from [Start] when to start the 
task. 

10. Set the time interval from [Recur every:]. We recommend 
setting it to 1 minute. 

11. Set [Repeat count:] to -1 to make the loop infinite. 

12. Click [OK] and confirm the changes. 

Step 4. Setting Dependent 
Trigger 
For the final step, we are going to set the dependent trigger. A 
dependent trigger cannot start itself and has to refer to a 
succeeding trigger to start. In this example, we are going to set 
the execution type of the dependent trigger as ReturnIfTrue, 
meaning the dependent trigger can only start when the 
succeeding trigger passes true .  

1. If you need to add a new Project, Job, and Trigger, follow the 
steps from 1 to 5 in Step 3. Setting Monitoring Trigger. 

2. From the [Schedule] tab, go to [Settings] and select 
[Dependent] from the option.

3. Next, select the monitoring task trigger from [Referred 
Trigger]. 

4. Select ReturnIfTrue from [Execution type]. 

5. Give a specific delay time to start the trigger from 
[Execution delay]. The default delay time is 3 seconds. 

6. Once all settings are complete, press [OK] and save the 
changes. 

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#001e396f684b46fd8c766042128e4991


MOZART Management Console(ENG) 133

Monitoring

In Monitoring, you can check the execution status of Trigger in 
MMC, CPU / Memory usage status of target server that performs 
Trigger, log for each Trigger, and execution time per Task.

When MOZART Server is installed, Monitor node is created on 
the target server in Server Explorer. By default, all view that can 
check the latest status of triggers and error view to check error 
history is created as Child node. In order to monitor specific 
triggers, users can add views directly and check the monitoring 
history of each triggers. The following descriptions are about the 
basic interfaces and functions of Monitoring.



MOZART Management Console(ENG) 134

Nodes
A description of Monitor node in Server Explorer.

All : If the registered Trigger is executed once, a history will 
be saved in All View. In All, the most recent information of 
the target trigger is only displayed. When Trigger A is 
executed once at 9 o'clock and executed at 10 o'clock again, 
All displays information about Trigger A performed at 10 
o'clock.

Errors : It displays the execution error history information of 
Trigger. While the most recent information of the target 
trigger is only shown in All, the target trigger is recorded 
every time an error occurs in Errors. Errors allows you to set 
the period that users want to view records.

User-Defined View : A View users added. A user-defined 
view can check the monitoring status of all the execution 
history of the trigger selected by the user. The list is output in 
10 units according to the activated window size by paging 
method. Please refer to Monitoring View Registration / 
Modification for adding user View.

Monitoring Table



MOZART Management Console(ENG) 135

The following describes the status information table of Trigger 
which is the main section in Monitoring UI.

TriggerName : The name of the target trigger registered in 
Trigger.

Scheduled : Displays the time when the target trigger is 
scheduled to run.

Start : Displays the time at which the target Trigger actually 
started to run.

End : Displays the target trigger is ended.

Elapse : Displays the total elapsed time of trigger execution.

Status : Displays the current status of the target trigger.

🟢Run : Target Trigger is currently running.

🔵Complete : Target Trigger has successfully 
completed with no errors.

🟡Aborted : Target Trigger has been stopped by force.

🔴Complete : Target Trigger has ended abnormally due 
to an error.

Result : Displays the result of Trigger execution. Only when 
the status of the target Trigger is Complete, it is recorded.

SUCCESS: SUCCESS is recorded when the target 
trigger finishes normally.

FAIL: If the target trigger is abnormally terminated due to 
an error during execution, FAIL is recorded. (The aborted 
status is not recorded in Result when Trigger is forcibly 
terminated by the user.)

Message : This column records an error message when an 
error occurs during the execution of the Trigger.

Top Menu Bar



MOZART Management Console(ENG) 136

Stop Trigger : This button is used to forcibly terminate the 
running Trigger. If the trigger is terminated by “Stop Trigger” 
in Monitoring or “Stop task if it runs longer” in Trigger, Trigger 
is terminated and the status turns into Aborted .  If the 
trigger is terminated by “Stop Trigger” in Monitoring or “Stop 
task if it runs longer” in Trigger(Trigger Setting), it can also 
be changed as Complete (FAIL) according to the thread.

Auto Refresh Interval : Set the time interval for updating the 
status of Monitoring Table.

Normal : This is the default setting. Updates Monitoring 
table information every 30 seconds.

High : Updates Monitoring table information every 10 
seconds.

Low : Updates Monitoring table information every 60 
seconds.

Pause : Does not update Monitoring table information as 
long as there is no user intervention.

Query : It is used in Errors or a custom view. Enter the 
period to be searched in Search Option, then it displays the 
monitoring information for the period when executing the 
query.

Performance Trend
In Performance Trend, only the $model and $cola Job Types are 
analyzed. In the Performance Trend graph of the Monitor, the 
base line is drawn based on the start of the selected target 
triggers and the CPU / Memory usage of the Server Machine 
within 10 minutes before and after the base line and the number 
of running triggers at that time are displayed. The Trigger's Count 
is calculated by not only the Trigger you selected but it also 
includes other triggers that were running at that time. If a user 
views the Trigger A and Trigger B is running at the time, the 
Trigger's count will be 2 in the Performance Trend.



MOZART Management Console(ENG) 137

CPU / Memory usage shown in Performance Trend includes 
CPU / Memory used by other processes besides Trigger (Mozart 
Agent). The dashed lines in the Performance Trend graph means 
the average CPU / Memory usage of the Server Machine and the 
solid lines indicate the actual usage of the time. The gray area 
means the number of triggers at that time. You can check the 
detailed information in Performance Trend graph when mouse 
over the graph.

💡 Note 
Performance Trend aggregate performances every 1 
minute. If Trigger runs shorter than 1 minute, it could 
bypass the aggregation interval and may not be shown 
in the trend. (Performance, Count)

Log Files
In Log Files, you can look up the history log file of the selected 
Trigger in Monitoring. You can open the log file directly by 
double-clicking the mouse or download the log file locally through 
the right-click menu. You can open the folder tab where the log 
file is located through the Open Folder button. Like Triggers, Log 
Files in Monitoring displays the log files for the last 10 Triggers.

Trigger Execution Log



MOZART Management Console(ENG) 138

Trigger Execution Log shows you the execution elapsed time for 
each phase of the selected trigger. To record the Trigger 
Execution Log in Monitoring, the value of #performance-profiling  
should be true .

PRE_DOWNLOAD : Displays the total elapsed time 
downloading the data from DB during the pre-loading phase.  

PRE_PERSIST_IN : Displays the total elapsed time loading 
the pre-downloaded data during the pre-loading phase. 

DOWNLOAD : Displays the total elapsed time downloading 
data from DB during task execution.

PERSIST_IN : Displays the total elapsed time loading input 
data during task execution.

ENGINE_RUN : Displays the total elapsed time of the 
module (Pegging, Simulation, CBS, etc) run.

PERSIST_OUT : Displays the total elapsed time creating 
output data file during task execution.

SAVE_DB : Displays the total elapsed time uploading the 
result data to the target DB during task execution.

Error Message
The Error Message records a detailed message about an error 
when the executed Trigger is abnormally terminated due to an 
error.

You can copy Error Message to the clipboard or check detailed 
error message.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#dadfb6f95db64c3c92fe5d68c9ca9698


MOZART Management Console(ENG) 139

Error Notification
Mozart Management Console (2.0) not only records logs in the 
Errors view when an error occurs during the execution of the 
engine but also notifies the user that an error has occurred.

💡 Note 
up only when the trigger error occurs during RUN 
state. No notification will be shown when the trigger 
has encountered an error as soon as its been 
executed.

Setting Log Preservation Period
The period to preserve the trigger execution, trigger run time and 
performance logs from MMC. Log Options menu appears by 
clicking the right-button of the mouse from the Monitor node.

60 days are set as default. The period can be modified in days.



MOZART Management Console(ENG) 140

How to Use Monitoring View

Monitoring View Registration
1. In Server Explorer, select a sever to register Monitoring View.

2. Right-click on the Monitoring node of the target server and 
select [Add View].

3. In the Add View Dialog, enter a name for the View Name and 
check the checkbox for the trigger you want to monitor. 
(Multiple choices available)

4. Click [OK] button to complete.



MOZART Management Console(ENG) 141

Monitoring View Modification
1. In Server Explorer, select the target server for the View 

modification.

2. Select the view you want to modify from the Monitoring node 
of the target server, right-click and select [Edit View]. 
(Predefined views such as All and Errors cannot be 
modified.)

3. Click [OK] button to complete.

Delete Monitoring View
1. In Server Explorer, select the target server to delete a view.

2. Select the view you want to delete from the Monitoring node 
of the target server, right-click and select [Delete View].

3. Click the [Yes (Y)] button in the pop-up window to remove 
the target view.

Data Pre-loading

When user sees execution structure of MOZART Main Task 
(refer to Main Control), Input Data goes through two phases to 
download and load data as shown in the following figure.



MOZART Management Console(ENG) 142

During Pre-Loading phase, Data is loaded for the first time. 
Then, during the main Data loading, the pre-loaded data is used 
to write codes like downloading specific data selectively or 
deciding whether a specific Module or Logic is executed or not. 
The following shows how to configure Pre-loading and its 
example.

Configuring Pre-Loading
1. Register Input DataItem that should be pre-loaded to 

"Preloading" group of Input Persist Config node. The 
following figure shows an Input DataItem that is registered in 
Preloading group after its creation.

2. For the item that is the target of pre-loading, it is possible to 
write Persist handler like the above figure.

Query Arguments Configuration 
Example
This example shows the way to configure Arguments used in 
Input Data Query through Pre-loading.



MOZART Management Console(ENG) 143

1. Define RunCondition  schema and DataAction like the 
following figure.

2. Register RunCondition  to Preloading Group and write Handler 
as the sample shown below.

3. You can see that the data of RunCondition  is downloaded.



MOZART Management Console(ENG) 144

4. The first DataItem loaded from this example is ProcSteps . 
The code example below is the Action Handler function of 
ProcSteps  and shows that the above configuration's result 
was saved.

Main Control

MOZART's Model is operated by Model Task provided from 
Library. Main Control is the FEComponent for configuring 
parameters to let Model Task operate Model and supporting 
to process data by user after Model operation is completed.

Model Task sets Task operation's start/end time, Simulation 
Version, and other information used in Simulation Model 



MOZART Management Console(ENG) 145

during Setup phase. Model execution, in general, is 
designed to process Execution Modules registered through 
MOZART IDE in a sequential order. The basic Execution 
Modules are Pegging & Loading Simulation Modules that are 
used to run Forward, Backward Planning. Basically, it is set 
for Pegging to run first and then Simulation.

Setup Phase



MOZART Management Console(ENG) 146

A set of FEAction is provided to adjust the entire task 
performance flow during Setup Phase. Designating a target 
Model to be executed and adjusting sequence can be done 
through here.

1. BeginSetup: Before Setup is handled, Logic 
creating/updating information to run Model are 
implemented in this action.

2. SetupVersion: This Action is called at the point Setup is 
executed. Plan Version can be configured by User 
definition.

3. SetupPeriod: This Action is called at the point Setup is 
executed. Plan Duration can be configured by User 
definition.

4. SetupLog: Setup logs can be implemented according to 
User definition.

5. SetupQueryArgs : Arguments to be used when 
executing DataAction for In/Output are configured.

6. EndSetup: This Action is called at the point when Setup 
is completed. If any additional configuration other than 
normal Setup handling logic is required, this FEAction is 
used to implement the configuration.

Input Data Download & 
Loading Phase
Through this phase, data is downloaded(query) from Data 
Source, saves it as a file and loads the data onto InputMart 
or TempMart in Memory for executing Module. In this phase, 
there is no Event in that any special user-defined logic can 
be executed.



MOZART Management Console(ENG) 147

Preloading : Input File Download and Data Loading is 
performed for the data set as Pre-loading in Input Data. Pre-
loading is mainly used to perform Main Input Data Loading or 
to load condition information from Data Source for controlling 
the entire execution.

Main Input loading : Input File Download and Data Loading 
is performed for the data that is not set as Pre-loading in 
Input Data.

Execute Phase
This Phase controls executions in MOZART. Each execution 
Module is initialized through this phase and event handling at 
the end of operation can be customized.

1. OnInitialize : OnInitialize is called after Input Data 
Loading is completed, but before Task is executed. The 
loaded data is primarily processed here and can be used 
to make additional Input Data.

2. Run : Run is the Main function and the entry point to 
perform Task. Definition in Run is bond to execute all 
Modules included in Model in Pegging, Simulation order.  
The default Definition can be used when Pegging, 
Simulation Module is added. Otherwise, if the registered 
Module is going to be used for arbitrary purpose, Run 
function needs to be redefined.

Module Execution Control through Run Function

// Example. Redefinition of Run function after CustomTes
t Module is added. 
// In general, Custom Module has higher priority than Si
mulation. 
// In case Module is required to re-process Simulation r
esult, the following lines should be included. 
public void RUN1(ModelContext context, ref bool handled) 
{ 



MOZART Management Console(ENG) 148

    // Refer Simulation Module by Module name (Module na
me is same as the name shown through Tree.) 
    var module = context.GetExecutionModule("Schedule"); 
    if (module !=null) 
    { 
        module.Execute(context) ; 
        if (context.HasErrors) 
            return; 
    } 
    // Refer to Custom Module 
    module = context.GetExecutionModule("CustomTest"); 
    if (module != null) 
    { 
        module.Execute(context); 
        if (context.HasErrors) 
            return; 
    } 
} 
 
// Sample code to run Custom Module 
public void EXECUTE0(ModelContext context, ref bool hand
led) 
{ 
    // Simple Log output sample 
    Logger.MonitorInfo("This is Custom Module Test!"); 
    // Logic can be implemented using InputMart, OutputM
art Data. 
} 

The result below shows the Custom Module execution 
log after Simulation is executed.

RUN_DEF Sample Code

public virtual void RUN_DEF(ModelContext context, ref bo
ol handled) 
{ 
    var handler = TaskControl.Instance; 
    var modules = context.GetOrderedExecutionModules().T
oArray(); 
    Logger.StartHandler(context.GetLog(MConstants.Logger
Execution)); 



MOZART Management Console(ENG) 149

    try 
    { 
        int count = modules.Length; 
        for (int i = 0; i < count; i++) 
        { 
            var module = modules[i]; 
            if (!handler.CanExecute(module, context)) 
                continue; 
            if (!handler.IsContinueExecution(module, con
text)) 
                break; 
            Logger.MonitorInfo(module.Name + " Start."); 
            this.lastResult = module.Execute(context); 
            if (context.HasErrors) 
                break; 
            Logger.MonitorInfo(module.Name + " End."); 
        } 
    } 
    finally 
    { 
        Logger.EndHandler(); 
    } 
}

3. CanExecuteModule : CanExecuteModule is used in 
default Definition of Run function. The function is called 
for each Module registered in MOZART project. Logic 
are implemented to decide whether this module should 
be executed or not. For example, if only Pegging Module 
needs to be performed although both Pegging and 
Simulation modules are applied, it is possible to execute 
Pegging module only by setting the return result of 
Simulation Module to false.

4. IsContinueExecution : IsContinueExecution is used in 
default Definition of Run function. This function decides 
whether to run/stop Module performance. If a return 
value is false, Module's execution is stopped. And this 
doesn't matter how many Modules are left to be 
executed.

5. OnBeginModule : OnBeginModule is used in default 
Definition of Run function. This function is called at the 
initialization of the Execution Module in order to 
implement user-defined logic. Since this function is 
called at the beginning of execution by all execution 



MOZART Management Console(ENG) 150

Modules, logic should be differently implemented 
according to the Model.

6. OnEndModule : OnEndModule is used in default 
Definition of Run function. This function is called at the 
end of Module execution in order to implement user-
defined logic. Since this function is called at the end of 
execution by all execution Modules, logic should be 
differently implemented according to the Model. 
OnEndModule is also called when error occurs during 
Module execution. Loading task for these errors can be 
separately performed.

7. OnDone : OnDone is called when execution of all 
Modules in the Project is finished. Additional processing 
for the result can be inserted at the time moment before 
the result is originally written.

End Phase

Save output file & Save DB : In End Phase, output data in 
Memory(OutputMart) is written into Output file. And among 
these data, some data items are updated in DB if required.

1. Shutdown: Shutdown is used for any future works after 
Model execution is completely concluded. Basically it is 
used to leave logs for errors occurred during Model task 
execution. When Monitoring table of Output Persist 
Config is configured, codes like the following example 
can be written.

Write Task Result Log Sample
Configure Outputs that saves the final result onto 
Monitoring Table from [Persist Config > Output 
Config]. Then, implement Shutdown function like the 



MOZART Management Console(ENG) 151

following. If problems are not considered with regard to 
saving the final result, the corresponding data can be 
written through OnDone or OnEndModule. However, if 
Monitoring table is configured, the results will be saved 
to a file or to DB after Shutdown.

public void SHUTDOWN_0(ModelTask task, ref bool handled) 
{ 
    // If Output DataItem name is ResultFlag 
    ResultFlag result = new ResultFlag() ;  
    result.STATE_TIME = DateTime.Now ; 
    result.STATE = task.HasError ? "FAIL" : "SUCCESS" ;  
     
    // Add values to the corresponding result table. 
    OutputMart.Instance.ResultFlag.Add(result) ; 
}

Save Monitoring Result(with final result) : Saves the final 
execution result of Task. The value of Monitoring Table 
that is configured in Output Persist Config is saved.

2. ProgressReport: ProgressReport is called on each 
start/end of reading DB, lading DB, executing Module, 
and writing DB. 'Stage' is the value to identify each 
execution point of the Action and ProgressReport Action 
is called at the point of each 'Stage'.

'Stage' Input Value of ProgressReport
PreDownload_Start : Read target Pre-loading DB

PreDownload_End : End target Pre-loading DB 
read.

PreLoading_Start : Load target Pre-loading data.

PreLoading_End : End target Pre-loading data 
loading

AutoDownload_Start : Read DB

AutoDownload_End : End reading DB

DataLoading_Start : Load data

DataLoading_End : End loading data



MOZART Management Console(ENG) 152

{Module(Pegging/Simulation/Custom) Name} 
Module_Start : Run Module

{Module(Pegging/Simulation/Custom) Name} 
Module_End : End Module

SaveOutput_Start : Write data

SaveOutput_End : End writing data

CommitOutput_Start : Write DB

CommitOutput_End : End writing data

SaveMonitoringOutput_Start : Write Monitoring 
Table Data

SaveMonitoringOutput_End : End writing 
Monitoring Table Data

CommitMonitoringOutput_Start : Write Monitoring 
Table DB

CommitMonitoringOutput_End : End writing 
Monitoring Table DB

The followings describes the reference items of 
ModelContext class that are basic classes able to be 
used while user-defined logic is implemented in Main 
Control

ModelContext Class

Main Property & Method
StartTime : Start time of Model execution (time set in 
start-time of Arguments)

EndTime : End time of Model execution (start-time + 
period of Arguments)

Arguments : Collection of Input Arguments value

QueryArgs : Collection of Arguments values used from 
DataAction for Input, Output persist. Input, Output persist

Version : VersionInfo object of execution version.



MOZART Management Console(ENG) 153

VersionNo : Execution version number string (Name, 
start time, VersionNom, etc.)

VModelName : Name of execution VModel

HasError : Check Model error

LastException : Error (Exception) information when 
error occurred from Model

Result : Task result of object form. Writes results of 
tasks refereed when Dependent Trigger is created

GetExecutionModule(string moduleName) : Return 
execution Module from Module name

GetOrderedExecutionModules() : Return list for all 
registered Modules

How To Refer
Referring through Action Parameter of Main Module : 
This could be referred during Action development of 
Main Module accessed through ModelTask.Context

Referring through ModelContext.Current : Can be 
used at any point.

Trigger Performance

The Performance node of MMC2 monitors the overall 
performance of triggers registered in the target server. By 
analyzing the performance through the Trigger Performance, 
you can check which stage of the task is delayed when the 
engine is started. Especially, developers and administrators 
can compare the performance of vmodel or dll before and 
after through the data. The following sections describe how 



MOZART Management Console(ENG) 154

to view the performance of the Trigger registered in the 
target server and the functions of the Performance window.

How to Collect Trigger Performance 
Information
To check the performance of the trigger registered in the 
target server's in Performance, one of the options in Trigger 
Argument needs to be enabled. The argument can be 
configured as follows.

1. In Server Explorer, select the target server for which you 
want to set the Trigger Argument.

2. Double-click the Trigger node of the target server to 
activate the Trigger window.

3. Select the target Trigger to record in the Performance 
and double-click or click the [Edit] button in the upper 
menu bar.

4. In the Edit Trigger Dialog, go to the Target Job tab.

5. Go down to the bottom of the list shown in the Target 
Job, check the #performance-profiling check box and 
click the [OK] button to save the settings.

Performance UI
Job Summary 
In Job Summary, you can check the total number of jobs 
registered in target server and the number of triggers 
mapped to job.



MOZART Management Console(ENG) 155

Total Job : The total number of jobs registered in the 
target server.

Trigger mapped Job : The number of jobs 
registered in the target server, which is registered by 
Trigger. When you double-click Trigger mapped Job 
Row, you can check the list of jobs for which the 
trigger has been registered. Even if multiple triggers 
are mapped to one job, the count of job is one in the 
trigger mapped job. (EX: Job A {Trigger A, Trigger B, 
Trigger C} -> Trigger mapped Job = 1)

Trigger un-mapped Job : The number of jobs 
that triggers are registered in the target server. 
When you double-click Trigger un-mapped Job 
Row, you can see a list of jobs for which triggers 
are not registered.

Trigger Summary 
Trigger Summary is a summary of the triggers 
registered in the target server. You can check the 



MOZART Management Console(ENG) 156

detailed information of triggers in the target server 
such as the number of triggers that are activated / 
deactivated among the registered triggers and the 
number of triggers to be recorded in the 
performance.

Total Trigger : The total number of triggers 
registered in the target server.

Active Trigger : The number of Triggers 
registered in the target server with activated 
[Enabled] option.

Profiling Trigger : The number of Triggers that 
#performance-profiling is true and registered in 
the target server.

Trigger Performance 
Trigger Performance is the area where the 
performance aggregation information of Profiling 
Triggers is expressed numerically and graphically. 
When the task is executed, you can check the 
detailed information such as the consumption time of 
each step, the total execution count of the trigger, 
and the success / failure ratio. The following 
definitions are about the terms used in the Trigger 
Performance area.

Period : Sets the period during which users 
want to check Trigger Performance. The period 
can be selected from Days / Hours and calls the 
aggregated history before Days / Hours set 
based on the current time.

Trigger

Name : The name of the registered Trigger 
Node.



MOZART Management Console(ENG) 157

Description : A description of the registered 
Trigger of the target server. Description can 
be entered at the Triggers node.

RunTime(sec)

DOWNLOAD : Displays the average elapsed 
time downloading data from DB of the total 
number of times the task has been 
executed.

PERSIST_IN : Displays the average elapsed 
loading Input Data of the total number of 
tasks performed.

ENGINE_RUN : Displays the average run-
time of the execution of module (Pegging, 
Simulation, CBS, etc) of the total number of 
tasks performed.

PERSIST_OUT : Displays the average 
elapsed time storing the engine results.

SAVE_DB : Displays the average elapsed 
time writing the result data to DB.

TOTAL_RUN : The average time of 
cumulative time from DOWNLOAD to 
SAVE_DB Action.



MOZART Management Console(ENG) 158

💡 Note 
In RunTime (sec) of Trigger 
Perfomance, the average 
consumption time of each target 
Trigger by action is displayed. In the 
bottom left grid of the Trigger 
Performance area, you can check the 
maximum / minimum consumption 
time of each trigger.

Furthermore, in the lower right part of the Trigger 
Performance area, you can see the ratio of the 
number of execution of the target Trigger for the 
user-defined period in the TOTAL_RUN time for 
each action in graph form. For checking the 
detailed information, you can check the 
execution time of Trigger action executed at the 
relevant time by mouse over the bar graph.

Reliability

MIN : The shortest execution time among 
the entire execution of target trigger.



MOZART Management Console(ENG) 159

MAX : The shortest execution time among 
the entire execution of target trigger.

LIMIT : The execution time limit of the target 
trigger. You can set it in Triggers -> Target 
Trigger -> Schedule Tab -> Stop task if its 
longer than.

RUN_COUNT : The total number of times 
that the target trigger has been executed. 
The count does not increase in case trigger 
has been stopped by users stop the task 
with Stop task in Monitoring or the Stop 
Trigger if it runs longer than option.

FAIL_COUNT : The number of times the 
target Trigger has been abnormally stopped 
due to an error.

FAIL_RATE : The percentage of 
FAIL_COUNT out of RUN_COUNT of the 
target Trigger.

SUCCES_RATE : The ratio of RUN_COUNT 
of the target Trigger that was performed 
normally.

Trigger Performance Dialog (Server Machine 
Resource Utilization Check)

In the Performance window, the CPU / Memory 
usage and percentage of the target Server 
Machine is displayed in a graph form in the 
Trigger Performance Dialog during execution of 
trigger. In the Trigger Performance Grid of the 
Performance window, the Trigger Performance 
Dialog window pops up if you double-click the 
Row of the target Trigger.



MOZART Management Console(ENG) 160

The Period is based on the user-specified period in Trigger 
Performance and users can set the period again through In 
the Trigger Performance Dialog window. In the Trigger 
Performance Dialog window, the execution time is counted at 
the time when the target trigger is executed. The total CPU / 
Memory usage of Server Machine during Trigger execution 
time is displayed as a graph. The upper blue graph shows 
the CPU usage and the lower green graph shows the 
memory usage. The light blue bar graph is the percentage of 
total CPU usage that the target Trigger (MozartAgent 
process) occupies and the light green bar is the percentage 
of Memory total usage that the target Trigger occupies. 
Darker colors represent the percentage of processes other 
than triggers. like most graphs in MMC2, you can check the 
detailed information in Trigger Performance Dialog if you 
mouseover over the graph bar.

How to Use Backup

When registering multiple Jobs/Triggers in the Server and 
executing Tasks, the HDD capacity can be fill in 
WorkingDirectory because of the accumulated engine result 
and log file. The results of engine run cannot be saved 



MOZART Management Console(ENG) 161

because due to insufficient HDD capacity when the 
administrator doesn’t care about the HDD capacity. MMC2 
provides the function to allow users to schedule backups for 
managing HDD capacity efficiently. The following settings are 
possible through the MMC2 Backup function.

Backup Cycle : Users can set a backup cycle just the 
way you set Task Trigger.

Back Path : You can designate the path for backup to 
different drive other than where WorkingDirectory is 
located.

Delete Source file(s) after backup : You can decide 
whether to keep or delete the source file after performing 
the backup operation.

File Filtering : You can set whether only certain 
extensions in the source path are backup progress or 
exception.

Set Min/Max File Size : You can set the maximum and 
minimum size of files to be backed up.

Back for File(s)/Folder(s) with Specific Date : You can 
set files to back up that are created within specific time 
or date.

Please check Backup Registration/Modification to see 
more details on how to configure backup schedule through 
MMC2.

Creating Backup Schedule

1. In the Server Explorer, select the target server for 
Backup registration.



MOZART Management Console(ENG) 162

2. Double-click the target server's Backup to activate the 
Backup query screen.

3. Click the [Add] button on the top menu bar.

4. In the New Backup Dialog, enter information for 
Schedule, Settings Tab.

5. Enter the information in Schedule Tab. The basic setting 
is the same as the Trigger registration method

6. Enter the information in Settings Tab.

https://www.notion.so/7371408630d541908ae16ec0429e5bd4#39a8d912d606468f97b45db4bc804e12


MOZART Management Console(ENG) 163

Folder Pairs : This section is to set the 
source/destination folder for the backup. 
Source/Destination folder pairs are be added by clicking 
the ➕ button and to delete the pair click the ➖ button.

Policy : Sets up the backup policy. Multiple selections 
are possible.

Remove source files after backup : Option 
whether to delete the source files/folders after 
backup.

Backup files as ZIP compression : Option whether 
to compress source files and save it to the 
destination.

Include hidden files and folders : Option whether 
to back up hidden files and folder from the source.

Filter : Sets the filter conditions of Backup. Multiple 
settings are possible.

File size : You can limit the maximum/minimum size 
of the file to be backed up.

Min size : Any file size below Min size value will 
be excluded for backup (units: KB/MB/GB)



MOZART Management Console(ENG) 164

Max size : Any files size above Max size value 
will be excluded for backup (units: KB/MB/GB)

File Type filter : Backup files only or exclude from 
backup with the configured file extensions.

including : When this option is selected and the 
file type is entered, only the files with the 
corresponding type in the source path will be 
backed up. Separator is used as ';' when 
inputting multiple files.

excluding :When this option is selected and the 
file type is entered, the files with the 
corresponding type in the source path won’t be 
backed up. Separator is used as ';' when 
inputting multiple files.

Last Write Time : Option whether to backup files 
that exceed the specified period. The basic unit is 
hour / day. (i.e. If the period is set as 1 Hour, the last 
modification date of the file that has passed one hour 
from the current date will be backed up.)

Log : Option whether to leave logs for Backup

Save Log : Logs for backup are saved when the 
checkbox is enabled.

Log Directory : Set the log file path of Backup. The 
backup log file is saved as a text document in .log 
format and the file name format is backup- [Backup 
Name] -yyyymmdd-hhmmss.log.



MOZART Management Console(ENG) 165

💡 Note 
The backup history log path does not need to be in 
the WorkingDirectory. A node to check logs like 
Projects are not added to Server Explorer and 
users can view the history by registering a shortcut 
or accessing the path where the backup logs are 
saved.

Checking Backup
1. In Server Explorer, select the Backup Check Se.  

2. Double-click the target server's backup file to activate the 
Backup screen.

3. In the Backup list, click the Backup Trigger that you want 
to view the Backup files / folders.

4. In the Destination Folders Tab, you can see the files and 
folders of the selected Backup.

Editing Backup Schedule
1. In Server Explorer, select the server to modify the 

backup schedule.

2. Double-click the target server's Backup node to activate 
the Backup screen.

3. Double-click Backup Trigger in the Backup.

4. Edit the Schedule / Settings Tab information and click the 
[OK] button.



MOZART Management Console(ENG) 166

Deleting Backup Schedule
1. In Server Explorer, select the server to delete the backup 

schedule .

2. Double-click the target server's Backup to activate the 
Backup screen.

3. Select the Backup Trigger to be deleted from the 
Backup.

4. Click [Remove] button on the top menu bar to delete 
Backup.

User Account and 
Authorization

User Account and Authorization
Credential information is required in order to access to the 
server via MMC. User with administration power can create 
user account and grant authority to restrict the usage of 
MMC functions according to user roles. The reason for 
separating authority is to avoid unnecessary incidents that 
could be caused by users rather than by the system. In this 
case, it is difficult to track the problem and sometimes 
leading to more serious ones. Default administrator account 
is created during MOZART Server installation (refer to 
Server Management). Other authorities should be granted 
manually and the following describes the authorities provided 
by MMC and its limitations.

Administrator : This authority has full access to all the 
functions in MMC. Only administrator power can 
create/modify credentials and grant authority to user 
accounts.



MOZART Management Console(ENG) 167

Developer : This authority has access to most of the 
functions in MMC except for creating/editing credentials 
and granting authority. Developer power is authorized to 
manage Projects and to distribute files.

Operator : This authority is used mainly for Job/Trigger 
management and execution. Operator does not have the 
authority to do any task from Projects node.

Viewer : This authority has the least access to MMC 
functions. Job/Triggers cannot be created or executed. 
This authority is mainly used when only information from 
Monitoring/Performance is required.

The following table shows which of the functions from MMC 
are permitted to use depending on the authority power.



MOZART Management Console(ENG) 168

Please refer to How to Register/Modify Users for more 
details on how to create user account and grant 
authorization to the account.See Also

How to Register/Modify Users

Create User Credential

1. Select the server from Server Explorer to add user 
credential.

2. Connect to the server with administrator account.

3. Double click on Users to activate Users tab.

4. Click [Add] button from the top side menu bar.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#cb9f0d005bd5440aaddb7331abed923c


MOZART Management Console(ENG) 169

5. Enter required information through Add new user Dialog.

User ID : Enter the ID to be used to access to the 
server. (Mandatory)

Password : Enter the password to be used to 
access to the server. (Mandatory)

Password again : Re-enter the password entered in 
Password for validation. (Mandatory)

First Name : Enter the first name of the owner of the 
account. (Optional)

Last Name : Enter the last(sir) name of the owner of 
the account. (Optional)

Email : Enter the e-mail address of the owner of the 
account. (Optional)

Role : Select the user role from the list. For more 
details regarding authorization please refer to User 

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#0206c107690646a3b7d13703b9e0b306


MOZART Management Console(ENG) 170

Account and Authorization. (Mandatory)

Description : Enter any additional information for 
the user account.

6. Click [OK] after entering all information.

Edit User Information 
1. Select the server from Server Explorer to edit user 

credential.

2. Connect to the server with administrator account.

3. Double click on Users to activate Users tab.

4. Select the user to edit from the list, double click or click 
[Edit] button from the topside menu bar.

UserID cannot be modified. In addition, the Role for 
default account 'sa' cannot be modified.

If the Password textbox is empty during modification, 
the previously set password will be maintained.

Deleting Users

1. Select the server from Server Explorer to delete user 
credential.

2. Connect to the server with administrator account.

3. Double click on Users to activate Users tab.

4. Select the user account from the list and click [Remove] 
button to delete the user.

⚠ Warning 
Default account 'sa' cannot be removed.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#0206c107690646a3b7d13703b9e0b306


MOZART Management Console(ENG) 171

Dependent Trigger Example

#Create-csv-files

Argument Description
Indicates whether to additionally create CSV files of Input and Output data 
during zip compression. When the task is performed with this option enabled, 
both vdat and csv format files will be created inside each Data and Result 
folder. See here for an example.

How to Update MOZART Server

How to Use Job Scheduler

The following shows how to manage Job Type and Job and how to schedule and 
manage Job execution through MOZART Management Console.

The contents in Result folder when task is performed with #create-csv-files = true



MOZART Management Console(ENG) 172

Registering/managing Server : This explains how to register and manage 
MOZART Server through MMC.

Registering/managing Job Type : This explains how to register and 
manage executable Job Types to the target Server.

Registering/managing Job : This explains how to register a Job to the 
target Server and how to monitor the Job status.

Registering/managing Trigger : This explains how to register a Trigger and 
how to monitor the Trigger status.

Registering/managing Shortcut : This explains how to register a Shortcut 
and how it could be explored through the server.

https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#7d761c0b017a4789a28fc0eb4a972000
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b1fe20f0887c4ab5b9446885df50cce4
https://www.notion.so/dc6a6a6c41b740ff90fa0592f4aa7a0d#b86d7d108faa40ebbc9d43963e7184e0



