
MOZART STUDIO (ENG) 1

MOZART STUDIO (ENG)

MOZART STUDIO OVERVIEW

Level1

Fuctions

Execution Structure

ProjectFileStucture

User Role

USER GUIDE

UI View

Studio Menu Structure

Model Download & AutoUpdate
Configuration

How to Open & Save a Project

view & check Model

Execute Project

DataItem View

How to Use Grid View

Level2

MOZART Model Overview

Download and Save DB

Execution Structure

How to Open & Save a Project

Execute Project

Download and Save DB Data

Report Schema Function

view & check Model

Export/Import Data

Manifest Editor

DataItem View

Mozart Model Overview

Open Item(Read - Only)

Export/Import Data

Managing the View With Layout

Level3

Job Type

Extended arguments

Mozart Model Overview

DataItem View

Export/Import Data

Multi Model Project

Open Item(Read - Only)

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#edec25cbe18c45788f74870d782c543d
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#10052f79cf5c4ec1a2daa005a46e2d0c
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#f42c599300aa48339c49f797db6571c5
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#c61a810d1d204826a4ba96c6e1e5c201
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#7e78bd9601ad45a7a3a5aff14ce922e9
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#c2ea374a53c84a60953427a366c0cad0
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#9ec3d5380bff4bb09ff099bae4eacea8
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#1f937b655205436d82019718c534e699
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#959bc90ce16c4c10aa36691791a2cb3c
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#b8c06c0cce39454d8b90ec279eca70c6
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8a764b868da34422b8d621e2b0b4b8fd
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#eb51fb85330a4b37b8494e25c14117dc
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8cd712accb31465fbdf49c0c991471c7
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#10052f79cf5c4ec1a2daa005a46e2d0c
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#1f937b655205436d82019718c534e699
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#b8c06c0cce39454d8b90ec279eca70c6
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#4b2624150d53425b8d67b93929546fa4
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#959bc90ce16c4c10aa36691791a2cb3c
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#fe0d907e96f14804a8ad099741ad9619
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8a764b868da34422b8d621e2b0b4b8fd
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8cd712accb31465fbdf49c0c991471c7
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#64f55b3652914b9fbcc78e741f1e0e3f
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#9d1eecc71842490692e76d26f3de8bde
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#d9ed11788c294d29b10dac117cf71bd4
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#2d234486bf774e9a9ba60698022ba541
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8cd712accb31465fbdf49c0c991471c7
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8a764b868da34422b8d621e2b0b4b8fd
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#950d402213a9417cb0c3f8561d8e006e
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#64f55b3652914b9fbcc78e741f1e0e3f

MOZART STUDIO (ENG) 2

How to Use Pivot Grid

Managing the View With Layout

Input Dataset

Export/Import Data

DataItem Import/Export

Download and Save DB Data

Extract Model DataItem(Schema)
Information

How to Use Data Join

Open Item(Read - Only)

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#01b299ad87754bed9866f072902bc352
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#9d1eecc71842490692e76d26f3de8bde
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#2e98e8c69a5e45b1afdd04d26dcf0985
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8b22675e661a4f4ba02f78140e94cb10
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#08739111a7834445b896f8b935636511
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#9ad3b358d6424f2d85bd3e59d30b781b
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#64f55b3652914b9fbcc78e741f1e0e3f

MOZART STUDIO (ENG) 3

MOZART STUDIO OVERVIEW

MOZART STUDIO (ENG) 4

Functions

MOZART STUDIO provides the following three functions.

1. Model Verification
Input, Output data Schema verification

DataAction(Query) verification for saving and inquiring Input, Output

System Input Argument inquiry, Config Argument inquiry

Datasource verification

2. Run experiment
Simulation option(Argument) configuration and execution function

Creates individual results for each run

3. Verification & Validation
Integrates the developed UI to the Studio to let users to analyze the data from Input, Output data and external DB source.

UI to analyze Input, Output data to check if logic are implemented properly.

UI to analyze the how much of the Plan result is reflected or matches to the actual operation system result.

Execution Structure

Each product of the MOZART STUDIO has its own execution file to be opened. For instance, if MOZART FP license is used, only
FP model can be created through MOZART IDE and the model can be only opened through FP_Studio. When a model is openend
through the Studio, Dll information to execute the model and UI dll information for model analysis needs to be referred. Basically
this information is included in the model when model is created from IDE. However, if the development and distribution enviroment
are different, the model information is not used. Instead, ".vinfo" file is used to get information from outside and used if necessary.
Check the diagram below for more details.

MOZART STUDIO (ENG) 5

Refer to the table to see the description for each file.

Description for each file

File Description

1) Model file (file
extenston : vmodel)

This is the file that saves Input/Output Data Schema, DataAciton, Argument, DataSource information of the model. One
model can have multiple Experiments, and one Experiment can have multiple results.

2) Model information
file (file extension :
vinfo)

This file includes the following information. 1. The Dll information of execution engine of the model 2. UI Dll information for
analyzing model execution result 3. Menu information of the UI implemented to the analysis UI Dll This file is designated to
be save in "Target" folder inside the "Bin" folder where MOZART STUDIO is installed. If this file does not exist, MOZART
STUDIO refers to the Model file (.vmodel). Otherwise, the contents in the Model information file (vinfo) has higher priority
to than the information embedded in the Model. In case the DLL and Config file path of the development enviroment is
different from the operation environment, the vinfo file must be created and distributed. To learn how to create .vinfo file,
refer to Model Overview.

3) Planning Engine
(XXXPlanning.dll)

The Dll file to run the Model. This is developed through MOZART IDE.

4) Analysis UI
(XXXUserInterface.dll)

The UI Dll file for analyzing model execution result. This should be developed as expansion from Visual Studio to
MOZART STUDIO.

5) Analysis UI Config
file

This file displays the UI View included in analysis UI Dll to the menu in MOZART STUDIO and designates the View
Assembly when the menu is active.

MOZART Model Overview

MOZART Model is a set of Data that includes definitions about Input/Output data Schema, Query, Data access information that are
used in a logic implemented through MOZART, and Arguments that are used for logic control. When a logic is implemented,
Schema and Arguments are used. When a logic is executed, data access information and Query are used in order to retrieve and
save data. Especially, execution needs Assembly information and access information that includes a logic executing the

https://www.notion.so/1-Model-file-file-extenston-vmodel-9e03de398f6e4e38a8ec2a4ab526b321
https://www.notion.so/2-Model-information-file-file-extension-vinfo-b4aca7877099451cb59b7829e92de0cf
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8cd712accb31465fbdf49c0c991471c7
https://www.notion.so/3-Planning-Engine-XXXPlanning-dll-9ab9fc158a47452faf135313fd5e6e01
https://www.notion.so/4-Analysis-UI-XXXUserInterface-dll-b3f54f9f95044e8896c1997845b5bae3
https://www.notion.so/5-Analysis-UI-Config-file-190a173fe62a44218a2c1dea306fc3f6

MOZART STUDIO (ENG) 6

corresponding Model. So a Model includes these information. That is, executing MOZART Model requires Model file and its
execution file.

There are two methods to execute this kind of Model on MOZART Framework. The first is to execute Model through MOZART
Studio. This method is normally used when a developer executes Model for testing during development or performs various
experiments with the same Model by changing input information. The second method is executed through MOZART Server. This is
used to apply Model execution's result to operating system according to user scenario. The following figure illustrates Model's
composition and operating structure.

Model Task is a default Job Type that is provided by MOZART. This has a role to execute a target Model by entering Extended
Arguments' value for configuring how to execute tasks (execution(0) to (3)) that are executed by Model Task. MOZART Studio can
run Model similarly to a method by Model Task, but basically most Model is executed with already created Input information so that
a task to download Input data for executing a logic is executed by a separate menu if necessary. As a result, MOZART Studio
executes execution(1) through (3) as a batch.

Project File Structure

Project file consist of .vmodel file and Input data that saves the Model information and file and folder that saves the result data. The
following table is the descriptions of the folder/file that composes the Project.

Descriptions of the folder/file that composes the Project

Folder/File Description

./XXX.vmodel

The Binary file that saves the Model information. The Model file contains the following information. • Input/Output Data
Schema, DataAction, Argument, DataSource information composing the Model • Includes the result information in case
model execution result exists. One model can have multiple experiments and one Experiment can have multiple execution
results.

./Data/[Input
Schema
name.vdat]

This file is saved inside the folder in "Data" folder which is saved inside the folder where .vmodel file is stored. Each file is
saved as Input data item name. The file is updated each time new data is downloaded. If the file is changed, it can be
executed by using the changed data set.

./[Experiment
name]/[Result
name]/[Output
Schema
name.vdat]

To run the Model, Experiment should be created first. The input Argument should be set from Experiment and the result is
created for each Experiment run and saved as the result Set(Result) name. The result is saved as the DataItem file defined
through Output. Multiple Experiments can be created from one Model and multiple results can be created from one
Experiment.

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#d9ed11788c294d29b10dac117cf71bd4
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#d9ed11788c294d29b10dac117cf71bd4
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#a83dafa442d44c0a9e7f35c6b7eaf529
https://www.notion.so/XXX-vmodel-232ed84e5cac4f969e034b8d876f0771
https://www.notion.so/Data-Input-Schema-name-vdat-fe064de6f84c4e039c6740cbe3c7bbcb
https://www.notion.so/Experiment-name-Result-name-Output-Schema-name-vdat-efbc762447b74d04a085310c7b59793c

MOZART STUDIO (ENG) 7

The figure above illustrates the basic execution process of the MOZART Studio. Studio only includes the process to load(Persist)
Input Data to the memory and generating the result file. The process does not include to store the result to the exterior database. If
Model is executed from the server environment, "Database to file" and "Save Output to database" is performed automatically, but in
if it is executed from the Studio, these two functions should be performed manually and individually. Refer to MOZART Studio
persist for more details.

Job Type

Job Type is a type of job that can be performed by Job Scheduler. Job Type has Arguments that determine the execution method.
Job Type can be managed by the Edit Job Type menu on the Job Management window. You also can select a job type when
defining a Job.

The following sections are descriptions of the basic job types provided by the MOZART Job Scheduler.

Sending e-mail ($sendmail)
This job type is for sending an e-mail when it is executed. You should specify the sender, recipient, subject, body and attachments
in the Job Type Arguments. Furthermore, you also configure the Outgoing Mail Server (SMTP). For administrative purposes, you
may set it for sending e-mails when certain jobs fail to run by MMC.

Executing Program ($exec)
It starts a program or script. If you want to execute the program or script specified that the command line arguments are used, you
can set these arguments in the “Add arguments (optional) text box”. In the “Start in (optional) text box”, you can specify a working
directory on the command line where you run the program or script. This directory should be a path for program/script file or the file
path used for the executable file. Programs that are built into Windows and executable files made by users are all executable if a
user has a permission for accessing them.

Model Task ($model)
Model Task is a Job Type for executing model-based tasks developed by MOZART IDE. The Model Task type has default
arguments (see Extended Arguments) for setting the model's behavior (see MOZART Model Overview). The most basic
argument for execution is the model information, which specifies a model in the Working Folder of the Server. The model to be

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#2d234486bf774e9a9ba60698022ba541
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8cd712accb31465fbdf49c0c991471c7

MOZART STUDIO (ENG) 8

executed defines the arguments to be set for execution as internal arguments, and these arguments should be set when defining
the task.

Collaboration Task ($cola)
The Collaboration Task is a task that enables multiple tasks to collaborate with others through communication between tasks at the
time of execution. You need to select the base model and set other models for the collaboration. (see Extended Arguments)

Extended arguments

The actual execution of Task and Model that are created through MOZART Project is done through ModelTask of MOZART
execution engine. The preset arguments to adjust the execution options of Model Task are System Arguments. Developers can
assign these System Arguments to Input Arguments of the Model to use the preset execution options. The followings are the
descriptions of System Arguments.

Basic Arguments

Argument Name Argument Description Data Type

#experiment Name of experiment that Model execution's output is created. Default is "Experiment 1" string

version-no Model's version name (Default format : {model-name}-{yyyyMMdd-HHmmss}) string

model-name Default name for versionNo when there is no versionNo entered string

start-time Task starting time (Simulation clock) DateTime

end-time Task completion time (Simulation clock) DateTime

period Plan&Schedule period float

period-unit period configuration unit (default : day) string

#start-time.AdjustMinutes Input variable to adjust starty time tp job execution time int

#model-file Full path of the vModel file string

#model-dll Full path of the model dll file string

#model-config Full path of the model configuration file string

Data Download/Upload Arguments

Argument Name Argument Description Data Type

#overwrite_result Option whether to overwrite result or not. boolean

#use-database Option whether to use database or not. (Input data download) boolean

#save-database Option whether to save output data to DB or not. boolean

#db-to-file
Option whether to synchronize database without running simulation. (default value = false) : Input
data download

boolean

#file-to-db
Option whether to synchronize database without running simulation. (default value = false) :
Output data save to DB

boolean

#db-includes
File name containing the list of tables to synchronize input data to the database. The tables not
listed will not be synchronized.

string

#db-excludes
File name containing the list of tables not to synchronize input data. All tables except for the
target tables will synchronize and if there is same table entered in #daction_includes, the
following table will not be excluded.

string

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#2d234486bf774e9a9ba60698022ba541
https://www.notion.so/experiment-e5eaea5a587449a48f84df240ec6304e
https://www.notion.so/version-no-5f6f8bfff99e45178582297f21d6febf
https://www.notion.so/model-name-05cd9d5bb21940a6a127f3a9e6efdb14
https://www.notion.so/start-time-3f586c2161a545899419f8636c6b6469
https://www.notion.so/end-time-58334974f37a4c4ca74aa4e0fad4ee06
https://www.notion.so/period-0dc56cf9b1dc449ebede85b84a4b7a58
https://www.notion.so/period-unit-21635bbfab0844cda18d3e4fd9dd7ad3
https://www.notion.so/start-time-AdjustMinutes-17a17126aca445d5acbc067fa886b72a
https://www.notion.so/model-file-d608eaa170e14de88e1b61a3ff8dc062
https://www.notion.so/model-dll-7ba9b995b5274288822e7c6f20ba2da6
https://www.notion.so/model-config-272d549ba81741d2b44ab31640858d23
https://www.notion.so/overwrite_result-f7e154484997404aacb016f75d760174
https://www.notion.so/use-database-6545d15eff774a4a98c710e6687ebdca
https://www.notion.so/save-database-19c4806f13c1448681ba55647ef252eb
https://www.notion.so/db-to-file-584a0da7576f443e925531ca63763c27
https://www.notion.so/file-to-db-45d03523eefc4f30a10b27ac295ad873
https://www.notion.so/db-includes-9a7865fd21714c9987e2804dfb658758
https://www.notion.so/db-excludes-3a97cd89913140539e9eae7b71fb652e

MOZART STUDIO (ENG) 9

Argument Name Argument Description Data Type

#daction_excludes
A checked-box drop-down list of Output DataItem to exclude DataAction execution during the
Save DB phase. The selected DataItems will not perform DataAction regardless of their
activation condition. This option cannot be used together with #daction_includes .

string

#daction_includes

A checked-box drop-down list of OutputDataItem to execute the DataAction during the Save DB
phase. Only the selected DataItems will perform DataAction and unselected DataItems will not
perform DataAction regardless of their activation condition. This option cannot be used together
with #daction_excludes .

string

#daction_excludes/in
A checked-box drop-down list of Input DataItem to exclude DataAction execution during the
Persist-In phase. The selected DataItems will not perform DataAction regardless of their
activation condition. This option cannot be used together with #daction_includes/in .

string

#daction_includes/in

A checked-box drop-down list of Input DataItem to execute the DataAction during the Persist-In
phase. Only the selected DataItems will perform DataAction and unselected DataItems will not
perform DataAction regardless of their activation condition. This option cannot be used together
with #daction_excludes/in .

string

#dataSource-set-
default

Sets the connection string to use as default from the model. The key is the name of the data
source and the value is the name of the connection string. In case multiple connection strings
need to be set the delimiter is semicolon (;).

Dictionary<string,string>

#datasource-set-
default-exception

Indicates whether to raise an exception in case the connection string specified in #dataSource-set-

default could not be found.
boolean

Logging/Performance Arguments

Argument
Name

Argument Description
Data

Type

#log-dir The relative path (Working Directory\Logs) to save the trigger execution log files. string

#log-level Sets the log level. (Verbose~Fatal) string

#performance-
profiling

Indicates whether to aggregate the performance of the model execution (default = true). Trigger Execution Log
information will not appear from Triggers and Monitoring if false .

boolean

Run Arguments

Argument
Name

Argument Description Data
Type

#more-runs Repeat count of Model execution. int

#more-config-
[runindex]

This variable is used to configure the argument's value for each repeated execution. If not designated, the argument
value of the previous occasion is used. This is automatically created by MMC

string

#run-index The current repetition's index. This is automatically created by MMC. int

Temp Folder Run Arguments

Argument
Name

Argument Description
Data

Type

#use-run-dir Indicates whether to create a temporary folder to execute the trigger. For more details see here. boolean

#max-run-
dir

Sets the maximum number of temporary folders to maintain. The oldest folder will be deleted when the number of folders
created exceeds the number set in this argument.

int

#use-
parent-path

Indicates whether to use the most recently created temporary folder of the reference trigger when the dependent trigger
executes. This argument is valid when #file-to-db is set as true.

boolean

https://www.notion.so/daction_excludes-ce30222149ad48f981428667ba5fa9a2
https://www.notion.so/daction_includes-e8111f3f9f3445bbbdffbaceb9438cb1
https://www.notion.so/daction_excludes-in-a83ba20c3f844e13b22efbf267a03cf7
https://www.notion.so/daction_includes-in-164c15bafbd741429536a71eca74a383
https://www.notion.so/dataSource-set-default-a49b5dc9529d4472a49d5dbce7bcb4f8
https://www.notion.so/datasource-set-default-exception-e133940920a64a6283f351fd2cabb5e7
https://www.notion.so/log-dir-59cf6041ba6f49599bddd007f20e154b
https://www.notion.so/log-level-dace7a75699b435f8aec4de0809e35ff
https://www.notion.so/performance-profiling-93112d053b2c4684b5ed8beeaced484f
https://www.notion.so/more-runs-8354ab3947c649eaa16d0cf4f8b2fd77
https://www.notion.so/more-config-runindex-1bcad0e20b1e4fd098715ea67b3f8572
https://www.notion.so/run-index-acb8e46fb59449c6868256a71b0f4a4e
https://www.notion.so/use-run-dir-ffa58e01ddbd4bf38cc8b1089a12256a
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#0bccce0c070142cfa999b7181d67b4a3
https://www.notion.so/max-run-dir-4264164e742b48c9ab4792b0dbbdcdf0
https://www.notion.so/use-parent-path-a67ad4e7fc92464985154563817225b2

MOZART STUDIO (ENG) 10

Zip Model Arguments
These Arguments are used to configure rules for making a compressed file(like ZIP file) from an executed Model.

Zip Model Arguments

Argument Name Argument Description Data
Type

#create-csv-files
Indicates whether to additionally create CSV files of Input and Output data during zip compression. When the
task is performed with this option enabled, both vdat and csv format files will be created inside each Data and
Result folder. See here for an example.

boolean

#zip Option whether Model is compressed after simulation is completed. boolean

#zip.Use7z

Indicates whether to compress the model execution result in a 7-zip format or not. This option can be used only
when #zip=true . 7-Zip compresses to 7z format 30-70% better than to zip format. Due to the high compression
ratio, the compression speed is slower than the zip method. Using this option may result in increasing the task
runtime.

boolean

#zip.Path
The path to create compressed file. If not set, the file is saved where Model files are located. The folder is
created as a relative path to Working Directory or else Working Directory itself will be used.

string

#zip.FileNamePostfix Postfix for compressed file name string

#zip.FileNameTempate

Template to save the name for the compressed file. Default template is
"${Model_name}_${zip_now}${zip_postfix}" The followings are the allowed keywords to be used. •
${Model_name} : Name of Model • ${now} : Time when compression begins (DateTime) • ${zip_now} : Time
string (format : yyyyMMddHHmmss) • ${zip_postfix} : postfix used for compressed file name • ${version-no} :
Model's execution version name • ${start_time}: Plan start time (format: yyyyMMddHHmmss) • ${end_time}:
Plan end time (format: yyyyMMddHHmmss)

string

#zip.UpdateToRecent

Indicates whether to overwrite the current model execution result to the most recently created zip file or not. If
true , the contents inside the most recently created zip file will be overwritten with the current model result. The
name of the zip file does not change. If #zip.FileNameTemplate begins with yyyyMM format, new compressed
file is created with the name of the most recently-compressed file that has the same year and month.

boolean

Hosting Arguments
The arguments listed below relates to the setting for hosting job/trigger from different Mozart server versions.

Hosting Arguments

Argument
Name

Argument Description Data
Type

#host-dir
This argument is to set the relative path of the mozart server located in the WorkingDirectory to execute the trigger from a
different version from the mozart server installed currently. For more details, see here.

string

#host-
version

This argument is to set the version of the moart server to execute the trigger from a different version from the mozart server
installed currently. This argument works as same as #host-dir but instead of locating the mozart server DLL files to the working
directory, this argument finds the DLL files of the specified version from the Execution folder. When #host-dir and #host-version
is set at the same time, the trigger will be hosted from #host-version. For more details, see here.

string

#create-csv-files

Argument Description

Indicates whether to additionally create CSV files of Input and Output data during zip compression. When the task is performed
with this option enabled, both vdat and csv format files will be created inside each Data and Result folder. See here for an
example.

Data Type

https://www.notion.so/create-csv-files-0590ebdc84064794b3bec4d9946bca9e
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#131ccb4d378a44639af4266fcf130509
https://www.notion.so/zip-df26f8310357430983305529b9cffa9f
https://www.notion.so/zip-Use7z-7b016e3f96c349f4a45e0b8d5abef9c3
https://www.notion.so/zip-Path-82d8df91412340a3aadf5cd74e26f4c4
https://www.notion.so/zip-FileNamePostfix-ba1e76e2debd4750b572e373f788f2fc
https://www.notion.so/zip-FileNameTempate-742644e7a32b48658f75b4c9a606f284
https://www.notion.so/zip-UpdateToRecent-544603b8c9be4b7895c34ee9e13fe655
https://www.notion.so/host-dir-5ab27aa37d28478b87f2de3fd22a1717
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#3d26fa6617da48018593ab2732a4035a
https://www.notion.so/host-version-2e93d7b1df8348ccb563d6696a587a76
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#6088630c34ef4ce69cfd4cf51acb9d28
https://www.notion.so/1fc788020da84c6d8b2ae1437f032be3

MOZART STUDIO (ENG) 11

boolean

Run Trigger from Another Domain/Execution DLL Versions

When the version of the MOZART Server is upgraded, the stability of the Job/Trigger execution from the latest version is not
guaranteed. The stability issue may require operating the Job/Trigger of the stabled version until the stability of the latest version is
guaranteed.

In MMC, users can set the Job/Trigger to run from different versions of domain library and execution DLL files other than from the
latest installed version.

The following table shows the name of the extended arguments and descriptions that you can use from MMC to set the Job/Trigger
to run from different MOZART versions.

Run Trigger from Another Domain/Execution DLL Versions

Argument DataType Description

#host-
version

string
The path of the domain library and execution dll files set from Execution Path in MOZART Configurator for Server. The
input value is the version number of the assemblies for the Job/Trigger to refer.

#host-dir string
Relative Path: The name of the folder in WorkingDirectory where the domain library and execution DLL files are stored.
Absolute(Full) Path: Any location where the domain library and execution DLL files are stored. The full path must be typed
in.

How to Use
This section explains on how to use #host-dir and #host-version arguments in MMC to set the version of domain/execution DLL
files for the Job/Trigger to refer. You can use either one of them.

The contents in Result folder when task is performed with #create-csv-files = true

https://www.notion.so/host-version-34cf928b961c44de8927bd1d2dfe0b50
https://www.notion.so/host-dir-a533283057bb4462bac904f809e25823

MOZART STUDIO (ENG) 12

In order to use one of these functions, at least two different versions of domain/execution DLL files should exist in the machine
where MOZART Server is installed .

#host-version
The steps to use #host-version are as follows:

1. Run MozartManagementConsole2.exe. The file is located in the path where MOZART client is installed (i.e C:\Program Files
(x86)\VMS\Mozart\Server\bin).

2. Select a server node from Server Explorer. Then, right-click and select [Connect Server].

3. Type the log-in ID and password to [User ID] and [Password] box and then click [OK] button to connect to the server.

4. Right-click on [Triggers] node and select [Open] or double-click [Triggers] node from Server Explorer to open [Triggers]
window.

5. Select a trigger from the list and double-click to open [Edit Trigger] dialog.

6. Go to [Target Job] and scroll down until you see [#host-version].

7. Select a version to run the Trigger from the drop-down list in [#host-version].

MOZART STUDIO (ENG) 13

8. Click [OK] button to save the changes and close the dialog.

#host-dir: Relative Path (WorkingDirectory)
The folder that contains the domain library and execution DLL files need to be placed in WorkingDirectory. Depending on the
MOZART server versions, these files are located in different paths. The following lists the default path where the files are located.

2019.3.114.1 and below: %ProgramFiles% or %ProgramFiles(x86)%\VMS\Mozart\Server or \VMS\Mozart\Server folder in the
path assigned during MOZART server installation.

2019.115.000.0 ~ 2019.115.100.0: %ProgramFiles% or %ProgramFiles(x86)%\VMS\Mozart\Server\Execution\[Version] or in
the \Execution\[Version] folder in the path assigned during MOZART Configurator for Server installation.

2019.116.000.0 and above: %ProgramFiles% or %ProgramFiles(x86)%\VMS\Mozart\Server\Execution\[Version No] or in the
\Execution\[Version] folder assigned from Execution Path: in MOZART Configurator for Server.

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.

2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Click [...] button in [#host-dir] box. Then, select the folder of the version to host the Job/Trigger execution in Browse For Folder
dialog and click [OK] button.

4. Click [OK] button in Edit Trigger dialog to save the changes and close the dialog.

#host-dir: Absolute(Full) Path
When using the absolute path to #host-dir, the specified folder is searched only in WorkingDirectory. However, when you set the full
path to #host-dir, the folder containing the domain library and execution DLL files can be located anywhere that you prefer.

MOZART STUDIO (ENG) 14

The steps to use #host-dir are as follows:

1. Follow the steps 1~5 in #host-version.

2. Go to [Target Job] and scroll down until you see [#host-dir].

3. Type the full path of the folder where the domain library and execution DLL files are located in [#host-dir] box.

4. Click [OK] button in Edit Trigger dialog to save the changes and close the dialog.

Priority
As mentioned above, to run Job/Trigger from a different version of domain library and execution assemblies, you only need to
configure either #host-version or #host-dir.

When both #host-dir and #host-version have values, the server searches for the existence of the folder in the following order.

1. host-version

2. host-dir (Absolute path > WorkingDirectory)

3. The folder with the highest version number in Execution path.

Let us assume that both values are set in #host-version and #host-dir. If the folder with the name specified in #host-version exists,
then the Job/Trigger runs hosted by #host-version. Otherwise, the Job/Trigger runs hosted by #host-dir. If both folders are not found
or no values are set in both #host-version and #host-dir, then Job/Trigger runs hosted by the folder with the latest version name in
Execution path.

The following example has values set for both #host-version and #host-dir. The Job/Trigger will run using 2019.115.000.0 version
DLLs if 2019.115.100.0 folder exists in Execution path.

MOZART STUDIO (ENG) 15

Download and Save DB Data

he Task execution process of MOZART is as shown below. From the default execution environment, the interface among the
exterior data is not performed and this could be only done through separate commands.

Database to file
This function is to create an input file from the exterior data base by running the query defined appropriate for the Input Data
Schema. This could be performed from [Project/Database to file] menu. Select the items to be downloaded from Input Data and
click [Run Order] button to define the downloading order. During data download, the system distributes 1~3 threads to download.
After all settings are completed, click [Run] to download.

MOZART STUDIO (ENG) 16

Save Output to database
To save Output to database, run the query connected to Output to save the data to the schema of the exterior database. First,
select the Result to be saved and open [Project/Save Output to database] menu. When the menu is opened a configuration
window will appear as shown below and the configured items will be saved only. To save Output DataItem. the DataAction should
be configured, and this is activated when Activate=true is set.

User Role

MOZART STUDIO (ENG) 17

The functions of MOZART Studio are restricted accirding to user authentication. In MOZART Studio, users can inquire the
information of DataSource, DataItem and DataAction which are added through MOZART IDE. Such sensitive information should be
acquired and edited by system administrator or core developers only, or any other individuals that are pretty could be caused for
making any changes. The restrictions to use the Studio function are applied to prevent human error. The following table shows the
functions that are available for each user authentication status.

Available MOZART Studio Functions Depending on User Authentication Status

Available MOZART Studio Functions Depending on User
Authentication Status
Available MOZART Studio Functions Depending on User Authentication Status (1)

번

호
기능 세부 사항 ReadOnly Download Analyst Power Admin Date

1 Open model(Project) O O O O O

2 Close model O O O O O

3 Save model O O O O

4 Download model O O O O O

5 Edit model O O

6
Extract model
information

O O

7 Compress model file O O O

8 Run Experiment O O O O

9 Add Experiment O O O O

10 View Experiment O O O O O

11 Edit Experiment O O O O

12 Remove Experiment O O O O

13 Stop Experiment O O O O

14 Add Batch O O O O

15 Edit Batch O O O O

16 Remove Batch O O O O

17 Edit Result O O O O

18 Remove Result O O O O

19 DB Download(Manual)
Database to file Query & Save to
File

O O

20 DB Download(Auto) use-database O O O O O

21 DB Upload(Manual) Save output to database O O

22 DB Upload(Auto) save-database O O O O O

23 View Input Argument O O

24 Edit Input Argument O O

25 Extract Input Argument O O

26 View Config Argument O O

27 Edit Config Argument O O

28
Extract Config
Argument

O O

29 View DataSource O O

30 Edit DataSource

https://www.notion.so/Open-model-Project-f61b64b4469348acb0511ae2e17e0b9d
https://www.notion.so/Close-model-5504e80b0cf947578a3b6cba1882ab27
https://www.notion.so/Save-model-5b654d73b2e64410bc4a89ce0e27d2ab
https://www.notion.so/Download-model-a3bf8a7993f14d20a62eb47436a109ce
https://www.notion.so/Edit-model-415bfab76f4f4eacaed87a422decc103
https://www.notion.so/Extract-model-information-97c8531a194c43ee88edee472e228fba
https://www.notion.so/Compress-model-file-1ee75d4138914f329fdf1a69d307b5e9
https://www.notion.so/Run-Experiment-dd637511483442c2911c7c593bbedef0
https://www.notion.so/Add-Experiment-0fbbe23ddeb74cbeb3d7d3af9f3f36d6
https://www.notion.so/View-Experiment-e255e7f3f3f947d09729f3dd5f95aa7c
https://www.notion.so/Edit-Experiment-e048d56a9c9d448ab7036c20ca1d533c
https://www.notion.so/Remove-Experiment-c78139467c22497e90af447816c4cef5
https://www.notion.so/Stop-Experiment-75dd72bb6b2f4c2387722e0df8633ec3
https://www.notion.so/Add-Batch-f7584af9acad419d972075be436272e0
https://www.notion.so/Edit-Batch-8f47bcd6e0654eac96e530cc3ceb177f
https://www.notion.so/Remove-Batch-d8bee8e6b1d047268230c80d73044446
https://www.notion.so/Edit-Result-ec463d2699fe4cc0a988394fe06e67dc
https://www.notion.so/Remove-Result-99dc24ac458d48bea097aa4eca70c054
https://www.notion.so/DB-Download-Manual-1b143099ce1a448d9dc56ed356e0bb00
https://www.notion.so/DB-Download-Auto-0dfaa7c1ed8f46f294b8de1bdc6068ea
https://www.notion.so/DB-Upload-Manual-95c63caee0b0488b9d49231e65cd54a0
https://www.notion.so/DB-Upload-Auto-6ef5fc7448fc46bb861b9275c89ec3c5
https://www.notion.so/View-Input-Argument-af3fe8133a424891a5c532e80021f244
https://www.notion.so/Edit-Input-Argument-63880d9852214dec8b01d26cbc11f14b
https://www.notion.so/Extract-Input-Argument-beec7a8ce535484fac24cd8d356c861e
https://www.notion.so/View-Config-Argument-f7bba6a443a043a28bd5ed0d5d86f9b0
https://www.notion.so/Edit-Config-Argument-090e1fec20004b80a6a6255e5e151a9a
https://www.notion.so/Extract-Config-Argument-fc7c0f60390f4bcb9dbf52c3427c8ed6
https://www.notion.so/View-DataSource-83fa8053917143538762d77643be6bfd
https://www.notion.so/Edit-DataSource-fd80c5a86ed74a11882d833babdf8c4d

MOZART STUDIO (ENG) 18

번

호
기능 세부 사항 ReadOnly Download Analyst Power Admin Date

31 Extract DataSource O O

32 View Schema O O

33 Edit Schema O O

34 Extract Schema O O

35 Write Schema Report O O

36 View DataAction O O

37 Edit DataAction O O

38 Extract DataAction O O

39 View Input Data O O O O O

40 Edit Input Data O O O O

41 Extract Input Data O O O O

42 View Output Data O O O O O

43 Edit Output Data O O

44 Extract Output Data O O O O

45 Connect to DB O O

99 End Studio O O O O O

USER GUIDE

UI View

The basic UI of MOZART STUDIO has three section.

https://www.notion.so/Extract-DataSource-f011500b3f4e43fa9204d7f754989448
https://www.notion.so/View-Schema-1b1157ce02944cad800ef7d92d5023ff
https://www.notion.so/Edit-Schema-a0bda8cb533449b794acd448f39bafed
https://www.notion.so/Extract-Schema-3d719d5ada09488ab657e38ec15437bc
https://www.notion.so/Write-Schema-Report-da2a64c8ee02461087dc271e5f2aa057
https://www.notion.so/View-DataAction-3d5cca4651954dadb7ad6c93387e89eb
https://www.notion.so/Edit-DataAction-8479e47918374f1cbf1303d8b012e3cd
https://www.notion.so/Extract-DataAction-aa1f0fed36144f6182ada7ba8e93f310
https://www.notion.so/View-Input-Data-aad1f5a719f14e1c8a6bbaa9df2382e4
https://www.notion.so/Edit-Input-Data-001d4988e19046828653ac42c7d930e4
https://www.notion.so/Extract-Input-Data-3b5b7be92717405686fc42bdf6918d40
https://www.notion.so/View-Output-Data-ae3f193718d349d490b24361ce3005c6
https://www.notion.so/Edit-Output-Data-7b17876c70ab458594df3ca094b01cb3
https://www.notion.so/Extract-Output-Data-d5ab83a7decd4e60a7b4b75ab2f9c5b7
https://www.notion.so/Connect-to-DB-b2b0f72597a0459ab8e85c5b4615409f
https://www.notion.so/End-Studio-7cdec650954547548cdf59da51cbbd5f

MOZART STUDIO (ENG) 19

1. Tree View : A docking window located on the left side of the UI as default. The Tree View has three tabs where run experiment
result, model and datasource can be inquired.

Experiment Tab View : The Inputs used to run the Model and the result from each Experiment are provided as Tree from
this tab.

Model Tab View : The schema and data action of Input/Output data item defined through Model or Arguments, Datasource
can be seen through this tab. Modifying the Local Model can be done, but an error could occur when linking to the
execution DLL file, so distribution after modification cannot be done. Input과 Output은

Data Tab View : The data table per Data source configured through the Model and Stored Procedure can be seen through
this tab. Additional data source can be included and inquired if necessary.

2. Output View : A docking window located on the bottom side of the UI as default. Model execution logs or error, warnings and
information after execution is completed can be seen by Level through this window.

3. Main View : This is the View where the activated window selected from Tree View or Main Menu bar is opened. It normally
displays Input/Output data or analysis/configuration UI window.

Studio Menu Structure

The basic menu of the Studio is shown through the following table. If analysis UI is included, the menu used from the UI is included
in the Studio menu. See Studio Execution Structure for more details.

The basic menu of the Studio

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#10052f79cf5c4ec1a2daa005a46e2d0c

MOZART STUDIO (ENG) 20

Menu
Category

Menu Menu Description
Menu

Category
Menu Menu Description

File - The menu set to download the project file from the remote server, saving and opening the project file.

File Open Project Opens the Project file. The Project can be opened by selecting the .vmodel file from the selection window.

File Close Closes the opened window.

File Close Project Closes the opened Project.

File Save Saves the data of the selected window.

File Save All Saves all the projects.

File Recent File List Shows the list of the recently opened projects and opens the selected project.

File
Download Data
From Server...

Connects to the MOZART server and downloads the compressed Project file or opens the project after download.
See "Project Open" for more details.

Edit - The menu set to copy/paste grid and searching.

Project - The menu set for editing and executing Project's Model.

Project Refresh Item Content

Project Delete Item
Deletes the Experiment, result set and result data. From Model Tab View, the tree node item of Input, Output,
Datasource can be deleted.

Project
New
Experiment

Creates a new Experiment.

Project New Batch Creates a new Batch Experiment. See Batch Experiment to learn more about Batch Experiment.

Project
Run
Experiment

Runs the registered Experiment.

Project
Run
Experiment
with Links

If Experiment is configured to link with the Model, Experiment is executed together with the linked Model.

Project Terminate Stops the Model execution.

Project Import
Imports Input/Output data item. If the imported file has the same Input name, it is overwritten automatically, or else will
create new input data. In addition, if the folder to save the data does not exist, the folder is also created automatically.

Project Export Exports, Input/Output data item. The exported file is saved as .vdif file.

Project
Database to
File

Uses the DataAction linked to Input data item to download the data and save it as a file. See Download & Save
functions for more details.

Project
Save Output to
database

Uses the DataAction linked to Output data item and saves the Output data to the target database. See Download &
Save functions for more details.

Project Report schema Outputs Input/Output schema and DataAction as XML. See Report Schema for more details.

Project
View Dataitem
by Database

If a specific Data Item is selected and executed, based on Datasource of the selected DataItem, other Data Item
using the same Datasource is grouped and showed in the Tree. This function only works through Model Tab View.
See Check Model for more details.

Project
Zip project
files...

Compresses the current Input, Output and Model file. The file can be saved to the designated folder/file name.

Project

Open model
folder in
window
explorer

Opens the file explorer and moves to the path where the model file is located.

Project
Vdat File
Information

Shows the properties of the vdat file of the selected DataItem. This menu activates only when a DataItem is selected.

Data - The function to Export/Import Input, Output data.

Data Import
The function to fill Input, Output data with the exterior data. Provides two options: Excel, Text file. See Data
Export/Import for more details.

Data Export Exports Input, Output data as a specified data type. See Data Export/Import for more detail.

Tool - Manages the expansion function of MOZART Studio and configures execution Options.

Tool Run Add-In Executes a sepecific functions from the registered Add-ins.

Tool
Organize Add-
Ins...

The function to perform adding/removing add-ins to Mozart Studio.

Tool Options...
The user option to configure the auto-update of MOZART Studio and Model download server configuration. See
Studio Option Configuration for more details.

https://www.notion.so/File-d17033a7f5324b99aeb6c43ae1c4d78b
https://www.notion.so/File-6655dcb3d4fa4a1594b0ecb0e01f8e7a
https://www.notion.so/File-7b00099052844277abc9c2fc8bd9a294
https://www.notion.so/File-0ce872a1ef864096822a2efe8fdb4d24
https://www.notion.so/File-c328c7978e34450585f549d7963d2c6e
https://www.notion.so/File-7db1255ec2bb44cab8f1d2ed9db2ec06
https://www.notion.so/File-2d9c01db95484042bef0e97b35fce5db
https://www.notion.so/File-cdb5ea719141460f9b7d0867fa786fdf
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#1f937b655205436d82019718c534e699
https://www.notion.so/Edit-6baec10f85f44e04a0f9db92ec4713ee
https://www.notion.so/Project-1db655d27b8644c482386fb10bc4f2bf
https://www.notion.so/Project-427612a09f884c34b7245050066322ee
https://www.notion.so/Project-d878736e842f4a6fa4abbd7a8ccb46eb
https://www.notion.so/Project-a85c2b1c758d45288817671477d877cb
https://www.notion.so/Project-fe467b3fd9ad40028f1b80b52c29c034
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#36f8a125d35a46c6b121dd7bc8d1201a
https://www.notion.so/Project-d29e8c0bd51b444986474401a7fdc1c0
https://www.notion.so/Project-e4436cc67c0f4004b10e5ef45e457402
https://www.notion.so/Project-7a6dfb2f303848ce8324d3ee0a924ab3
https://www.notion.so/Project-d403afd0281242b2a9f7c5e522bc90b8
https://www.notion.so/Project-2d0573f593b2496b92f697f7462fc968
https://www.notion.so/Project-18ef6aab3fb2441e86943a2e2770b2c4
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/Project-f76356c05a664b52b2c9de8f8a216aed
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ab46f55f7131425cb46ef698697721fe
https://www.notion.so/Project-dbcecd21393a41ba97460ffc70e45460
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#4b2624150d53425b8d67b93929546fa4
https://www.notion.so/Project-33744f40bf444488a3e9afe76b74d17f
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#959bc90ce16c4c10aa36691791a2cb3c
https://www.notion.so/Project-cb96048876ed4bbea0f1b610a71672ed
https://www.notion.so/Project-725cb2ab6e314b97ad9642224dee1dfb
https://www.notion.so/Project-49d0d4318af1485eac49d918d66597bb
https://www.notion.so/Data-389ef38be2714a4380b647a853aba569
https://www.notion.so/Data-970d580fbf094c9cb2bd0d28656ec067
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/Data-208f148805264dd2bfda8f8a65ce9521
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35
https://www.notion.so/Tool-40bf1fac97854d2880b6e4676d2b6f43
https://www.notion.so/Tool-8822fa5e60274a219e2887ab9e095d66
https://www.notion.so/Tool-c961fb562e6a460dae414bd1e1e7b206
https://www.notion.so/Tool-46391e47de4a495eba239c11b419520d

MOZART STUDIO (ENG) 21

Menu
Category

Menu Menu Description

Help
License
Information

This is where registered license information and EULA can be checked. This also activates Mozart Product Activation
Tool. See License Activation to learn how to activate the license.

How to Open & Save a Project

There are two ways to open MOZART Project. One way is to run .vmodel file located in the local or remote folder. The other way is
to get the list of executed models and download it from the server by choosing a specific model file to open.

Open project from file
The project can be opened from file through one of the following three ways.

1. Open Project by selecting .vmodel file from [File/Open Project] menu of the studio.

2. Drag and drop .vmodel file on the top side of Tree View to open Project.

3. Inquire the list of recently opened Projects through [File/Recent File List] and select a Project to open.

Open project from Server
If [Downloads] server is registered, the models running in the server can be inquired and selected to be downloaded or open the
file after download. Refer to [Options] configuration section to learn how to set Download server.

1. Select [File/Download data from server] menu or click the icon from Toolbar.

2. From the [Download Data From Server] dialog, select the server to download the model file.

3. Inquire the list of models executed from the selected server and select the model to download.

4. Click [Download] button to download the selected model file, then select the location to download the model. The path to
download the file can be configured through [Download Path] section located on the bottom side.

[Auto Classify] unzips and saves the downloaded model file by creating a folder of the server under the path set in
[Download Path] section.

5. In case a folder with the same name of the downloaded model already exists, select whether to overwrite contents.

[Yes] : Overwrites the model and data files of the existing folder.

[No] : Keeps both existing and downloaded files. The folder of the downloaded model will be re named "Folder Name(1)".

[Cancel] : Cancels the download.

In case you are downloading more than one model result files, selecting [Apply to all items] will enable the selected
options to all the model files selected to be downloaded.

💡 Note
Overwriting the existing project is available from the 2021.18.3 version.

https://www.notion.so/Help-b9d8af59ca694af78bd14ae877cd491e
https://www.notion.so/44d0042354db4283a83f8ebbd5cddc5e
https://www.notion.so/44d0042354db4283a83f8ebbd5cddc5e

MOZART STUDIO (ENG) 22

Saving a Project
There are three ways to save your project(model + data) from MOZART Studio. You can save the changes from the tab you are
viewing, save the changes for all the opened tabs, or save the changes by making a copy of the model and data files to a different
folder or make a copy of the model file with a different name.

Save
[Save] command saves only the changes made from the currently open tab in Mozart Studio.

Save All
[Save All] saves all the changes made from all opened tabs in Mozart Studio.

Save As Project
[Save As Project] saves the changes by copying the model and data files to a different folder or make a copy of the model file with
a different name. The following steps show how to use [Save As Project].

1. Go to [File] and select [Save As Project] from the toolbar menu in MOZART Studio.

2. Choose where you want to save the model and data files.

3. Enter a name and click [Save] button.

Execute Project

In order to run the Model, either Experiment needs to be defined or Batch Experiment needs to be created. Defining Experiment is
the procedure of defining the execution condition(Input Argument). The Model is performed according to the configured execution
condition and results are left for each execution, in which having Experiment : Result = 1 : N structure.

Experiment
This is the set of execution conditions. A single Model can have multiple Experiments. Right click on Experiments node and use
[New Experiment] menu to create a new Experiment. Once Experiment is created, either press the run button on toolbar on the
top or press "F5" or the run button in Experiment window to run the Model. The Model is executed and results are created
according to the Argument set through Arguments window in Experiment.

MOZART STUDIO (ENG) 23

The created result is added as the child node of Experiment node using [Result #] as name. The name of the result can be
changed through the pop-up menu.

Batch
For each Experiment execution, one result is created according to the configured Argument Set. However, Batch Experiment is
executed and its result is created according to the combination of the configured Input Argument. To configure Batch Experiment,
right click on Experiments node and use the [New Batch] menu. The basic Argument settings of the Experiment can be seen with
the tab to configure Batch Argument through Batch configuration window. Through Batch Tab, the Argument to adjust the value of
Input Argument needs to be configured and the changed value of the corresponding Argument needs to be entered to plan Batch
execution. The following is the example configuration. Change the DefaultSetupTime to 10,20,30 minutes and DefaultPreset value
to 101,102,103 respectively and Model is executed and result is created as a combination of the two changing Arguments. The
delimiter used for the Argument value is the comma and if the data type of the Argument is Boolean, the value should be input as
"true/false" string value.

MOZART STUDIO (ENG) 24

If the setting for the Batch is done as above, total of 3*3 =9 results are created. The results can be seen as the combination of
Batch Argument values as seen below. Either by double clicking the Result note or pressing the Enter key after selecting the result,
the configuration value of the selected result can be seen.

Load Arguments

MOZART STUDIO (ENG) 25

[Load Arguments] is a function to retrieve the arguments from the Result and set them to the model arguments before execution.
You can retrieve the arguments from the followings:

Arguments from Result of the same model.

Arguments from Result in different model

Loading arguments from the same model
1. Press [Load Arguments] from the top left side of the Experiment View.

2. Select the Result from the list to retrieve the arguments from and press [OK] button.

3. Check if the arguments have been retrieved from the selected Result.

MOZART STUDIO (ENG) 26

Loading arguments from a different model
1. Open the model to copy the arguments. Double click the Result to open the [Result Description], and copy the arguments

inside.

2. Open the model to get the argument. Press [Load Arguments] from the top left side of the Experiment View. Then select
[Custom] and paste the arguments copied from the other model.

MOZART STUDIO (ENG) 27

3. Arguments that does not match or exist will be printed in red text.

💡 Note
Arguments in the red text mean there was no matching argument from the source model. In this case, click the
argument to restore its default color.

Report Schema Function

MOZART STUDIO (ENG) 28

Model information contains Input, Output data, execution option, query and DB connection information. They are relevant design
information. The latest design information can be inquired through the Model and it could be documented to HTML format and
shared. This could be done through [Project/Report Schema] menu.

The document created from the menu contains all the data in the model as shown through the following example.

MOZART STUDIO (ENG) 29

MOZART STUDIO (ENG) 30

View & Check Model

MOZART Model has Input data and Input Argument information required for Model execution and the defined information of Output
data to save the execution result. In addition, Mozart Model has DataSource to extract Input Data and save Output data. The Model
and its features are all designed through the Model editor of MOZART IDE. The same View of the Model can be seen through
[Tree View/Model Tab] of MOZART STUDIO.

1. Arguments : Verifies Input Argument/Config Argument

Input Argument : This Argument is used when the value of the Argument can be confirmed to be used as fixed value during
Model execution.

Config Argument : This is used when the Argument value itself needs to be changed according to the Context. For
instance, if the value of the same Arguments has to be changed according to the processing line, Config Argument can be
used.

2. Database : The DataSource used from the entire Model can be seen.

3. Inputs : The required query(DataAction) to download data and the Input Schema to run the Model can be seen here. See
Using Data Item View to know more about checking Schema and modifying query through Data View

4. Outputs : The data schema to save the Model execution result and the query(DataAction) to save through DB can be seen
here. See Using Data Item View to know more about checking Schema and modifying query through Data View.

See MODEL Overview to see more details how to define each functions.

In addition, using [Project/View dataitem by Database] menu in [Model Tab View] can be seen by grouping the Data Item by
DataSource connected to download and save the corresponding Input, Output data. The following example is the TreeView after
grouping the DataItem.

DataItem View

If user inquires about Input, Output in [Experiment Tab View], Dat of Input, Output can be displayed. The followings are the
functions that are basically provided in Data Inquiry View.

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8a764b868da34422b8d621e2b0b4b8fd
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8a764b868da34422b8d621e2b0b4b8fd
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ffe961b8e97e400481896ffa1b762f80

MOZART STUDIO (ENG) 31

Open Schema : The corresponding data's Schema information can be inquired. Schema View is the same as Input, Output
Schema is inquired in [Model Tab View].

Open Action : DataAction (Query) defined in the corresponding data can be inquired. If more than one DataActions are registered,
only DataAction with Active = true is inquired. To inquiry about and change Activate configuration of all DataAction, use [Model Tab
View].

Test Values : This configures Test value of Query Argument that is used when executing DataAction that is configured in Data
Item. Table displays Argument that is configured in Query statement and the value for Test is entered. This can be used only for
Input data Item. As shown in the following figure, Query Paremeters window displays the columns where variable's value can be
configured only for Query statement that uses variable with the prefix like "@", "$".

Query & Save to file : This downloads by executing the activated DataAction and updates the corresponding file. If Query
statement has any error, the existing data is kept. This is used only for Input data Item.

Fix Data : This is a function to change values in the specific column of Data at once. This can be used for both Input/Output data
Item. If column and value is entered in the following Fix Database window, value of the corresponding column is changed at once.

MOZART STUDIO (ENG) 32

Manage View : This is the function to save/recover user-defined value about Grid and to save Filter configured in Grid for each
user and apply them selectively.

Layout : This is the configuration menu for Grid Layout.

Save Current Layout : Current Layout is saved.

Load Default Layout : System default Layout is applied.

Load Custom Layout : Saved user Layout us applied.

Filter : This is Filter-related menu.

Save Current Condition : This saves Filter Set that is used in the current Grid.

Load Filter Condition : This selects and configures a specific Filter by inquiring about the registered Filters. It is possible to
delete the existing registered Filter through the corresponding Dialog.

Clear Current Condition : All currently configured Filters are deleted.

Edit Current Condition : This opens a window in which user can edit the currently configured Filters.

Create New Filter : The currently configured Filter is deleted and Filter Editor is activated so that Filter can be edited.

How to use Basic Grid View

How to Export/Import Data

Export/Import Data

Import Data
In general, Input Data is assumed that it is created by downloading data from the exterior DataSource (DB) running the query at the
point Model is executed. However, when a certain period of Input Data is used for test purpose or creating Input Data through text,
Import function is used.

Excel : Copy the Excel data to the input window and Import data by pressing [Append][OK] button. When [Append] is used,
the previous data is maintained and new data is added. If [OK] is pressed, the previous data is removed and filled in with the

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#5e27e57e7d974e0d8128a6b51ba65e35

MOZART STUDIO (ENG) 33

new data. As shown through the example below, the first row is the column name and the data is input starting from the second
row. The columns are separated by Tab. This can be used as copy&pasting Excel data.

Text file : It is similar to Excel Import function, but the method for assigning input file is different. Through [Import/Text file]
menu, select the target Text file, then a window to select the file is activated. If the .txt file with the same input formation as
shown from the Excel input window above, the data is imported by deleting the previous Input data and replacing it with the
data from the selected file.

Export Data
This function is to output the grid data as data file type. The supported formats are as shown as below: Excel, Text file, HTML,
XML, Rtf, PDF, Mht.

Model Overview & User Guide

Concept of Model

MOZART STUDIO (ENG) 34

A Model is an information file that includes Input & Output data (schema) and Query & Configuration information, etc. Inputs &
Outputs data are required for executing logic in MOZART project and Query & Configuration information is used to transform data
into an object form for easy processing of a logic or to save an output data to a file or database. This also includes Argument
information that receives values deciding a method or options about how to work on a project. Most projects developed in MOZART
IDE use various Input data from many different Data sources and these data can be consistently managed and designed through
Model.

Multiple Models can be created in a single MOZART project. It is possible to create and use a child Model that inherits contents of
the first created Model. Refer to Multi Model Project for more information.

Components of Model
Arguments : Defines the execution option and setups of the logic to use in the Model. There are two kinds of Arguments: Input
Argument and Config Argument.

Database : This provides a function to manage a string for accessing to all data in the Project. The registered Data source can
be used as a configuration value for Data source property when Schema and DataAction is edited.

Inputs : This defines Input Data Schema and DataAction of Task. It also defines the order and method for input data loading.

Outputs : This defines Output data schema for Task. It also defines the order and method for saving output data. Outputs are
basically saved in a file. However, outputs can be saved into Database through option setting and query.

Add a Model to Project
Add a Model in a newly created Project as follows..

1. Select Top node of Model Explorer.

2. Open pop-up menu by clicking right-mouse-button.

3. Select Add>VModel.

4. When a Dialog opens, enter a name for the Model.

5. Check whether a Model with the entered name is created or not in Model Explorer.

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#950d402213a9417cb0c3f8561d8e006e
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#ec828e8af6794d04ac49be714fbe17c7
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#bf48194728024a7aab9b231bdd6c2bdc
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#3f2cbdcc87a444c4b87085ab9899df48
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#d04f4561ea004e578e36be3a339d2449

MOZART STUDIO (ENG) 35

Edit Model Information
Model information is saved as file using '.vmodel' extension and includes information about Model components and properties.
TASK(Dll file) developed in MOZART IDE can only be executed when it is linked to the Model. Therefore, Model contains relation
information of Model and dll file, environmental configuration for Model execution, etc. In order to read and edit this information,
please refer the following procedure.

1. Select Model node and click right-mouse button to open a pop-up menu. Then, select [Edit Vinfo] (this menu item is for editing
Model information) to open the following window.

2. Edit any required item and save them. Explanation of each item are listed as below.

Category : Type of Model. Default value follows the Site Prefix of when a Project is created.

Title : Name of Model.

Guid : GUID of Model. This is an ID used to distinguish Tasks (Job Types) based on Model. If necessary, you can recreate
this ID by clicking the 'browse' button on the right side.

Assembly : Name of DLL used to operate a Model. Click a button on the right side to designate a specific Dll file. .

Configuration File : Configuration file for executing the Model. Use the button on the right side to browse the file. The file
can be directly entered.

Private Path : Name of the folder where the target Assembly file (DLL) for execution is stored. You can manually designate
the corresponding file by clicking the button on the right side. Or you can click Sync to project on the bottom side in order
to set the path to "bin/Debug" of MOZART Project which includes the Model.

Description : Description of Model.

3. This configuration information is saved to a Model file (.vModel) and if it is required, only a specific information can be exported
to a file. Select [Export VInfo] on pop-up menu.

4. Select a folder to store the file. The file will be created and saved as 'Model Name.vinfo'.

5. VInfo file includes Model information indicated on the above and is required to add user-defined User Interface to MOZART
Studio in the future. The next figure shows the contents inside the file.

The contents of VInfo file

MOZART STUDIO (ENG) 36

<target guid="7db113e2-1e7d-493a-8b2b-be22dd1b13ae" category="Site" title="VMS.FP_Planning">
 <path configurationFile="" privatePath="D:\MOZART\VMS.FP_Planning\VMS.FP_Planning\bin\Debug" />
 <type assemblyName="VMS.FP_Planning" typeName="" />
 <description />
</target>

Export/Import Model
In case a new project have similar functions as the existing one, you can copy the previously defined Models using Import/Export.

Export
1. Place the mouse cursor to the Model to be exported and then click right button and choose [Export VModel] from the menu.

2. Select a folder to save the Model.

Import
1. Add an empty Model to the new project.

2. Place the mouse cursor to the target Model and then click right button and choose [Import VModel] from the menu.

3. Select the exported '.vmodel' file.

4. You can see that Model information is customized to the new project and all the data from the exported Model are also created
to the new one.

Multi Model Project

MOZART STUDIO (ENG) 37

In MOZART project, multiple Models can be created. But, the first created Model becomes Base Model and additional Models are
created by inheriting Base Model. The following figure shows the relationship between Base Model and Child Models.

If Scheduling system is built for each Line, each system may have almost similar Inputs, Output structure but partial difference in
Data source or Argument, etc. In this case, the first developed Line Model becomes Base Model and subsequently developed
Model is built by inheritance. Inherited Child Model has constraints on its modification in order to keep a relationship with Base
Model. The followings explain constraints on editing each item comprising Model.

Constraints on Editing Child Model
Items in Base Model are targets of constraint. It is basically impossible to delete any item from Base Model but to add new ones.
However, item modification is allowed but these also have set of rules applied. The following explains details for each item's
constraint.

Arguments : Constraints on Editing Input Arguments or Config Arguments

Add Arguments : O

Modify Arguments : X

Delete Arguments : X

Data mapped with Config Argument's value : X

Database

Add Database : O

Change Database name : X

Change Database access information : O

Add Database access information and change the order of access informations : O

Remove Database : X

Inputs, Outputs

MOZART STUDIO (ENG) 38

Add Schema : O

Modify Schema : X (add or change Property)

Delete Schema : X

Add DataAction : O

Modify DataAction : O (Can Change all parts including DataAction name and Query, etc.)

Delete DataAction : X

Add and Activate Child Model
Child Model is added by [Add>VModel] menu at top node of MOZART project as if adding a Model. Name of this Model should be
different from Base Model's name. As shown in the following figure, Base Model and Child Model use different icons.

The blue arrow displayed on Base Model icon means that the Model is currently activated. Activated Model is the one used in
project during Debugging. In order for user to configure a Model to be used for debugging, select a target Model and click [Active]
on right-mouse-button pop-up menu. Then, the selected Model is displayed with blue arrow on its icon, which is indicates the Model
is now active.

Information of Activated Model is configured as a Model to-be-executed in Project Property information. Like the following figure, a
Model in Command line arguments is configured as an activated Model.

MOZART STUDIO (ENG) 39

Write Logic for each Model
This section explains how to configure or refer a Model in case Arguments from other Model is required to add logic or logic
required to be applied to each Model respectively for simualtion.

How to design a logic for each Model in Persist Config
Model can be designated for each Persist Group. If a Model is selected in Model configuration combobox like the following figure,
data is loaded only to the corresponding Model. In order to load individual data for each Model separately, user may implement this
by discerning each Model through the following introduction (How to check a Model when you implement a logic)

How to check a Model when you implement a logic
A Model that is currently running can be checked through VModelName property in Model Context object. VModelName has the
same name as Model displayed in Tree. The following is an example.

if (ModelContext.Current.VModelName == "ChildModel")
{
 // Implement a logic processing Child Model
 // Example: Data can/cannot be loaded only for a specific Model
}

All Model files added in Project are created as (Model Name).vModel in [Project root folder/Generated folder]. The distributing
Child Model is exactly the same as distributing Base Model.

Arguments Management

MOZART STUDIO (ENG) 40

Arguments define options and configuration values used in executing logic of Model. MOZART's Arguments can be divided into two
types according to their purpose.

Input Arguments
Input Arguments are received through input parameters when Tasks are executed. So they define arguments that are used as the
same parameter values regardless of context used in whole execution of Module. Mainly it defines parameters about logic
execution options. For example, it is used to configure an option value deciding whether 'Equipment PM Schedule' or 'Yield' to be
applied or not. Input Argument can be configured while configuring MOZART Studio's Experiment or while registering Server Job &
Trigger.

For Input Arguments, you can control how to run a Model by registering pre-defined Arguments. (Reference: System Argument)

Basic Configuration of Argument

Arguments are configured in the following procedure.

1. Select a Model registered in MOZART Explorer.

2. Expand Arguments node into two child nodes : Input Args & Config Args. Then, select and double-click Args that needs to be
registered.

3. Arguments registration window appears. Then, enter a value to be registered for each cell of grid.

Category : This defines Argument Group. In MOZART Studio or MMC's Job/Trigger Registration window, Arguments are
displayed as a group classified by Category.

Name : Name of Argument

Caption : Name of Argument displayed in MOZART Studio.

Type : Type of Argument data

CollectionType : Argument can be created as Collective variables. The available types are listed as List, Set and
Dictionary. Dictionary's Key is defined in the form of string.

InitialValue : Default Value of Argument

ValueRange : If Argument's value should be within a specific range, an information about the range is entered. The range's
values are displayed in combobox form when parameters in MOZART Studio or MMC are entered and a value can be
selected. If data input looks like the following figure, you can see Arguments' list in Experiment>Argument window of
MOZART Studio and select one from the list.

Description : Description of Argument

[Example of Arguments Input]

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#86c860739f0442fa9c2e67901919fad8

MOZART STUDIO (ENG) 41

[Example of Experiment/Argument window of MOZART Studio]

4. Save input values. (Press Ctrl+S or use Save button on the top menu of Visual Studio)

5. If input/modification of Argument is made, Arguments in Model Explorer are displayed with check mark. Then, focus on Model
Explorer and press the save button to save the Model with modified Arguments.

6. If Model is saved normally, Arguments can be used through InputMarts.

How to refer Input value of Argument
Argument's input value can be used through InputMart. Input Argument is referred through GlobalParameter of InputMart and
Config Argument is referred through ConfigParameter. See the following example source code as a reference.

Reference to Value of Argument

// If SourceFolder, DestinationFolder are defined as Input Arguments
// they can be refered to like the following.
string source = InputMart.Instance.GlobalParameters.SourceFolder ;
string destination = InputMart.Instance.GlobalParameters.DestinationFolder ;

Config Arguments
Config Arguments are similar to Input Arguments. But they are used mainly in the case that arguments change according to context
during Module execution. For example, a transfer time among steps or a Setup can be dealt with by Input Argument. But, if
transfering times among steps for each Line are different or Setup time should be configured dependent on Equipment group,
Config Arguments should be used. The value in Config Arguments creates Input Data and links it for usage. (Refer to How to use
Config Argument)

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#11787fb67aa24e15b902e89188be46bd

MOZART STUDIO (ENG) 42

How To Refer Config Arguments
The input value of Arguments can be used through InputMart. Config Argument is referred through GetConfigParameters of
InputMart.
See the example source code as a reference.

Referring Config Arguments

// Define McGrpSetupTime from Config Arguments
// If the Config values are "EQPEGRP1,60 ; EQPGRP2,45"
ConfigParameters conf = InputMart.Instance.GetConfigParameters(string.Empty);
string[] grps = conf.mcGrpSetTimes.Split(';');

System Arguments

sTask and Model created in MOZART Project are executed by ModelTask of MOZART engine. System Arguments are arguments
that is pre-defined to adjust execution options of ModelTask. Developers can use a default setting for execution options by
designating pre-defined System Argument when they configure Input Argument of Model. The following table describes the pre-
defined System Arguments.

Basic Arguments

Argument Name Argument Description Data Type

Model name of Model file (full name including the path to the file) string

#experiment name of experiment that creates results of Model execution string

versionNo name of Model version (default format is {model-name}-{yyyyMMdd-HHmmss}) string

model-name if there is no versionNo, this is used instead string

start-time Start time of Task (simulation clock) DateTime

end-time End time of Task (simulation clock) DateTime

period Plan & Schedule period float

period-unit unit for period configuration (default is day) string

#start-time.AdjustMinutes an input variable that is used to adjust Job start-time with the corresponding time length int

#model-file Full Path to Model file. This path includes name of an executable Model string

#model-dll Full Path to Dll that executes a Model string

#model-config Full Path to Config file of a Model string

Data download/upload Option Arguments

Argument Name Argument Description Data
Type

#overwrite_result Decision of whether a result is overwritten or not bool

#useDatabase Decision of whether a database is read or not bool

#saveDatabase Decision of whether output data is written to a database or not bool

#db-To-file Decision of whether only database sync is executed without simulation run (default is false) bool

https://www.notion.so/Model-4e7cdec2d90c418f9c5dcd0eafaa03e9
https://www.notion.so/experiment-47675d43ba6948f6affb6281851bea1e
https://www.notion.so/versionNo-e9c3185b90de4d8b989369f6622086aa
https://www.notion.so/model-name-c589c2710e594db29c307852d613d204
https://www.notion.so/start-time-039951eb2d744d1b90ac9332a876a7cd
https://www.notion.so/end-time-0b84843d01034a7793f9f6aa7a21c73a
https://www.notion.so/period-72610e5359a24c2d9bb1a52acceb7519
https://www.notion.so/period-unit-618ba84f0c424a178e80f56d2c50f4ca
https://www.notion.so/start-time-AdjustMinutes-15f9fb013269401ba5cf30ed283b38aa
https://www.notion.so/model-file-b9de8c66d85a401da7b22cefd528a910
https://www.notion.so/model-dll-b2cc4edc04974835bd5abd54b4db5406
https://www.notion.so/model-config-96383c3a0a76446a8edf49dbbfbba552
https://www.notion.so/overwrite_result-886e452c77a6468c8cbf8a3c2be1e125
https://www.notion.so/useDatabase-beb60e5755c14fc2aae971b1f3eb67d8
https://www.notion.so/saveDatabase-0a0fefd3b12c450cb6fdad722f6214bf
https://www.notion.so/db-To-file-806401c6bd964251a6bb39c156180114

MOZART STUDIO (ENG) 43

Argument Name Argument Description Data
Type

#db-includes File name of list of tables that are objects for Input data sync. Only the corresponding tables are synchronized string

#db-excludes
File name of list of tables that are not objects for Input data sync. The corresponding tables are not synchronized.
If there is the same value in #daction_includes, executable is not reflected.

string

#daction_excludes List of tables whose DataAction is not executed after a simulation run. Comma is used as delimiter. string

#daction_includes List of tables whose DataAction is executed after simulation run. Comma is used as delimiter. string

#daction_excludes/in
List of Input Schema's DataActions that are excluded from their execution in the beginning of simulation. Comma
is used as delimiter

string

#daction_includes/in
List of Input Schema's DataActions that are going to be executed in the beginning of simulation. Comma is used
as delimiter.

string

Run Arguments

Argument
Name

Argument Description Data
Type

#more-
runs

the number of Model's repeated executions int

#more-
config-
[runindex]

an xml file that saves configured values of arguments for each repetition. If any argument is not configured in Config file for the
current repetition, it uses a value of the previous repetition. If data for previous execution still remains in memory when new
data is being loaded, this can cause an error. So if moreRun is used, DataMart should be reset after moreRun's result is
written.

string

Zip Model Arguments
This argument is used to configure a rule to make a compressed Model file after a Model is executed.

Zip Model Arguments

Argument Name Argument Description Data
Type

#zip Decision of whether a Model is compressed into a file or not. This is reflected with priority bool

#zip.FileNameTempate

Template for saving the name of compressed file. The default template is
"${Model_name}_${zip_now}${zip_postfix}" The followings are usable keywords. • ${Model_name} : name of
Model • ${now} : time when compression is executed (DateTime) • ${zip_now} : time string used by template
(format : yyyyMMddHHmmss) • ${zip_postfix} : suffix that is used at the end of the configured name of
compressed file • ${version_no} : Model version number

string

#zip.FileNamePostfix Suffix that is used at the end of the configured name of compressed file string

#zip.Path
Path to the location where the compressed file is created. if not designated, the file is created in the location of
Model file

string

#zip.UpdateToRecent
Decision of whether the recently-compressed file is updated or not. If true, a new compressed file overwirtes the
latest compressed file. If #zip.FileNameTemplate begins with the naming format like yyyyMM, the new
compressed file will have the name of the same year and month with the latest compressed file.

bool

Configuring Config Arguments

https://www.notion.so/db-includes-8628e94e7643471999d8552b512dd8b5
https://www.notion.so/db-excludes-b81bfb2fefd6481b9022c64ba25653e8
https://www.notion.so/daction_excludes-d77abe0b6cce42368687123921c8feae
https://www.notion.so/daction_includes-5600f41953e84cf7850399e8e471d6cb
https://www.notion.so/daction_excludes-in-5547eb8c331d42e394c04d9d4cd12109
https://www.notion.so/daction_includes-in-95ebd849e2d646929a91f9137fde2f11
https://www.notion.so/more-runs-61cb8bd903c44f95bc70709ba2b65039
https://www.notion.so/more-config-runindex-e88f680aefab4702bb249fc15626e69d
https://www.notion.so/zip-b3fcf6efa0504d42919a0c35b5da480d
https://www.notion.so/zip-FileNameTempate-2b65273daf3e444485e880e4500d723d
https://www.notion.so/zip-FileNamePostfix-b563cfac285441beadfd8e857b94a938
https://www.notion.so/zip-Path-2a1fd4d0fe634e2b93a3c5e6450eb5ef
https://www.notion.so/zip-UpdateToRecent-6192ce0f9b9d4c7d85a8842d6c91104d

MOZART STUDIO (ENG) 44

Defining Config Arguments has the same method as entering Input Argument. However, Config has to refer to master information,
that has been managed by user group, more often. So actual argument values are managed with Input DataItem and the
corresponding DataItem's values are automatically allocated to Config Argument at their configuration execution. See the following
figure for details.

How to Define & Use Config Argument on Development Phase
1. Create DataItem to store Config Data through Inputs (See example image below).

2. Define Config Argument that is going to be used in System

3. Set DataItem and Column mapping information in order to allocate Config Arguments automatically.

MOZART STUDIO (ENG) 45

💡 Note
Set the options for Config Data Table value and Mapping Field so the Config Argument values could be stored at the
beginning of execution.

Config Type : Select a data table for Config Argument among Input dataitems as follows.

Group : This is used to group input DataItem data for necessary cause. In order to manage the data as a group, set Group
to the corresponding column when DataItem's value is configured. One of the selected Config Type's columns can be
chosen. This setting is not mandatory.

Key : A column that is mapped on Name property of Config Argument. This is selected from columns of tables that is
configured in Config Type.

Value : A column that is mapped on value of Config Argument. This is selected from columns of tables that is configured in
Config Type.

4. A logic is implemented with configured Config Arguments. The following shows an example code.

Example of Config Argument Use

// A coding example.
// Different setup time is applied to dependent on equipment group
// When config4 is set to Config Arugment that defines a setup time for each equipment
public Time GETSETUPTIME(MOZART.SeePlan.Simulation.AoEquipment aeqp, IHandlingBatch hb, ref bool handled, Time prevReturnValue)
{
 ConfigParameters confs = InputMart.Instance.GetConfigParameters(string.Empty);
 string[] grps = confs.config4.Split(';');

 Time def = Time.FromMinutes(10);
 Time setup = Time.MinValue;
 foreach (string grp in grps)
 {
 string[] setupTime = grp.Split(':');
 if (aeqp.EqpID == setupTime[0])
 {
 setup = Time.FromMinutes(Convert.ToInt32(setupTime[1]));
 break;
 }
 }

 if (setup == Time.MinValue)
 setup = def;

 return setup;
}

Checking on Execution Phase
1. Check data that is used as config information in MOZART Studio. If DataAction is included to synchronize the data from DB,

use [Query & Save to file] menu to extract the data.

MOZART STUDIO (ENG) 46

2. If the settings are done as above, the values will be automatically assigned to Config name variables of the Config Parameters
and these values could be directly referred as shown in the example code, Example of Config Arguments. The following figure
shows the status of values assigned to the corresponding confs variables during Debugging.

3. In case you want to manage Config individually from a certain Group, select a Group Mapping Column from Config Arguments
option and then select the Group to set the variables. See the image below for example.

Get Config Argument for each Group

// To get whole Config Argument
ConfigParameters confs = InputMart.Instance.GetConfigParameters(string.Empty);
// To get Config Argument for a specific group, See the following example.
// The following shows a configuration code example that only data with CONFIG_GROUP = "test1" are retrieved from config table.
ConfigParameters confs = InputMart.Instance.GetConfigParameters("test1");

4. If a specific group is configured as shown in the code above, the result value is changed so the value in config4 is set to null.

MOZART STUDIO (ENG) 47

Data Source Management

This function is for registering and managing data source that can be used in MOZART Project. Once a Data Source is
registered, it is used to define Input/Output data and create DataAction. MOZART's Data Source can include multiple access
string information and the first string is executed for data access. If necessary, a specific data source can be designated
through data soucre's access string name written within a program code.

How To Manage Data Source

1. Select a Database node in MOZART Explorer

2. Select [New DataSource ...] on right-mouse-button pop-up menu.

3. After a Data source name is entered on Edit Data Source dialog, click [Add] button to register access string.

4. After entering a data source name on Data Source dialog, choose a target Data Provider in Data Provider combobox.

💡 Note
MOZART supports 4 types of Data providers which are Microsoft Access, Microsoft SQL Server, Oracle, and
DB2

5. Enter a data access string. This string can be directly entered into text box at the bottom of dialog window or you can
activate an input window for each data source by clicking [...] button.

When [...] button is clicked, a dialog "Select database" will appear. In "Select a database" combobox, -registered
database can be selected. If a new database is added, select [New Database Connection].

To Add a new database, select a database type from "Select a database type" combobox at the bottom and click
[Create...] button.

If access information is entered through input window for each database type, the corresponding data source is added.

6. When access strings are registered, all registered access strings are displayed on the list at the bottom of Data Source
dialog.

7. In order to delete an access string, select the corresponding access string and click [Remove] button.

8. In order to edit an access string, double-click the corresponding access string or click [Edit] button while the string has
been selected.

9. If there are multiple strings in Data Source but no specified configuration applied, the first string is applied as default. If you
want to apply other string, use [Up][Dn] buttons to change their order.

MOZART STUDIO (ENG) 48

 Data Input Persist Configuration

Persist Config defines a procedure and method that loads Input DataItem as data in memory. Input Persist consists of 3
components such as Input Data Group, Input DataItem, and Input Save Log. Options for loading of all inputs can be configured
through input for Root Item of Persist Config. Executable menu is [Persist Config > Input Config] in Mozart Explorer.

Configuring option for loading all Input data
If the top node in Tree is selected, menus for defining data loading options are activated.

Name : name of log for all Inputs

Model : This selects a Model that the configuration for the corresponding group is applied to. If this is configured as "*", the
corresponding configuration is applied to all Models. If a specific Model is designated, this configuration makes all
DataItems in the corresponding group be loaded into only the designated Model.

Log performance: Decision of whether a loading time for all data is recorded or not.

Tread count: This designates number of Treads used when batch download is executed.

DB job retry count: This designates number of retrials for DB access or command execution when batch download is
executed.

Configuring option for loading Input DataGroup
It is possible to define loading option for each DataGroup. When a DataGroup is selected in Tree menu, user can configure the
corresponding properties in property pane at the right side.

MOZART STUDIO (ENG) 49

Name : Group name used while loading.

Log performance: Decision of whether a loading time for all data is recorded or not.

Startup message: Log message used at the beginning of loading for a group. When a message is edited, Usable variables
can be used.

Example of How to use Usable variable

Entered Log Message : This is test log start message at ${Now}

Displayed Output : This is test log start message at 2014-09-22 06:05:11

End message: Log message used at the end of loading. When a message is edited, Usable variables can be used.

Configuring option for loading each Input DataItem
It is defined options for loading an individual DataItem.

Name : DataItem name used while loading. Change of this name is not allowed.

Enable: Decision of whether the corresponding data is loaded or not. If not checked, this DataItem is not automatically
loaded.

On after load item : This executes methods that user can process like transition or validation for each row of data in
DataItem. If this CheckBox is checked, the to-be-executed method can be executed through ComboBox and buttons just

MOZART STUDIO (ENG) 50

under the CheckBox. Return value of this function means whether the corresponding row of data is loaded or not. If true,
the corresponding row is added to loaded data. Otherwise, the row was filtered.

Select Action : One of pre-registered Load Methods can be selected in this ComboBox.

Add Action : With [버튼이름] button, a function's name and empty source code is created to process the corresponding data.
Name of this function is PersistInputs.cs file and is created in Logic folder.

Edit Action : [버튼이름] button is used to edit source code of the function selected in ComboBox..

Edit Action name : [버튼이름] button is used to edit the name of Action.

Executing action: If an additional special load processing is required after all data of DataItem is loaded, this option allows
to define and execute a method. In order to add and edit an Action, refer to explanation in On after load item.

Log performance: Decision of whether loading time of DataItems is recorded or not. If checked, loading time of DataItems
is recorded in log information.

Use temporary context: Generally DataItem can be divided into 2 groups. One is a data group that remains loaded in
memory while Model is being executed and the other is a data group that is temporarily loaded into memory and can be
removed from memory at the end of loading process. This option decides this kinds of group for each DataItem. If checked,
this DataItem is removed from memory at the end of input data loading. The created class is referred to through TempMart.

Configuring option for creating General Log
Log Item can be used to leave a log at a specific location regardless of DataItem during data loading or to execute a specific
method. Log Item can be added by using [Add>Log] of Persist config. To add a log at a specific node in Tree, select the node
and use the same Add>Log menu. Then, a Log Item is created just under the node and its option can be configured through
property page as described in the following figure.

MOZART STUDIO (ENG) 51

Name : name of log.

Model : Model that this log is applied to.

Executing action: This designates a method that runs at log execution and configures whether this method is executed or
not. If checked, the method configured in ComboBox is executed. One of the pre-registered method is selected or a new
method can be created.

Log message: Log message that appears at the location of LogItem is configured. Log message context can include key
registered in Usable variables.

Data Output Persist Configuration

In Output Persist Configuration, procedures and methods for saving Output DataItem into memory to a file or DB are defined. In
order to proceed with a series of procedures, components that define Output Persist can be divided into 3 types such as Output
data group, Output data, and Output save log. And option for processing all outputs can be configured through Persist Config.
[Persist Config > Output Config] menu is used for its execution.

Configuration of Options for Saving All Output Data
If Top node in Tree is selected, menus that define this option are activated.

MOZART STUDIO (ENG) 52

Name : A log name for all Outputs

Log performance: The decision of whether a processing time for saving all data should be recorded or not.

Thread count: number of threads that are used to upload data in batch.

DB job retry count: number of repetition for DB access or execution of command during batch upload.

Monitoring table : An output can be defined to record success/failure of Task execution after all Tasks have been
executed. After the output is configured, its result can be written through ShutDown Action of Main Control.

Example. Use of Monitoring
1. Define an Output data item to write output result.

2. Designate an Output data item (which is defined in 0) for writing result into Monitoring table property of Output Persist
Config.

3. Implement ShutDwon Action of MainControl.

4. Write results in DB for Monitoring through DataAction configuration about Output result.

MOZART STUDIO (ENG) 53

Configuration of Options for Saving Output Data Group
For each Output Data Group, separate saving option can be defined. When a Data Group is selected in Tree, its property is
configured through property pane at right side of window.

Name : Name of data group.

Log performance : decision of whether a processing time for saving all data should be recorded or not.

Startup message: Edit log message at the beginning of Group data saving. If the message is edited. Usable variables at
the bottom can be used.

Example of How to use Usable variable

Log Message : This is test log start message at ${Now}

Output: This is test log start message at 2014-09-22 06:05:11

End message : Log message used at the end of saving. When a message is edited, Usable variables can be used.

Configuration of Options for Saving Output data Item
For each Output Data Item, separate saving option can be defined.

MOZART STUDIO (ENG) 54

Name : Name of DataItem. This name can not be changed.

Enable : Decision of whether data is saved or not. If not checked, this DataItem is not saved as a file.

Excuting action : This option is used that after data of DataItem is saved, additional processing is required for the data. It
is possible to write user's codes such that adds separate Output by processing data of the corresponding Output Data
Table. In order to use this option, refer to the method to use Action, which is defined in Input Persist Configuration.

Writer Type : This defines types that save output. The following illustrates each type.

Auto write : Default option. When the number of data in Output Mart exceeds 10 thousand, data is written into an
Output file and the data saved in a file is removed from memory

Buffered : When Output is defined, another Buffer storage is created. If not all properties of Output data are defined,
the data is temporarily saved in this storage. When all properties of Output are confirmed, the data is moved to Output
and is deleted from Buffer storage. Management code for Buffer is written by user. At the end of simulation run, all data
remained in Buffer is saved as Output data. If saved as Output data, this is saved in Output files by unit of 10 thousand
entries and is deleted from memory. Please refer to the following example code to see that data is written to Output
which is configured as Buffered

Keep in memory : Data remains in memory from start till end of all tasks and isn't written to output file in the middle of
processing

Example. Processing Output using Buffered Option

private void WriteEqpLoadingPlan(ILot lot, IHandlingBatch hb, AoEquipment eqp)
{
 SiteLot mLot = lot as SiteLot;
 string eqpID = eqp.EqpID;

 // Search an information of starting time that is saved in Buffer
 var plan = OutputMart.Instance.EqpLoadingPlan.FindBuffer(eqpID, mLot.LotID, mLot.CurrentStep.StepID);

 if (plan ==null)
 {
 plan = new EqpLoadingPlan();
 plan.EQP_ID = eqpID;
 plan.LOT_ID = mLot.LotID;
 plan.STEP_ID = mLot.CurrentStep.StepID;
 plan.START_TIME = mLot.CurrentPlan.StartTime;
 plan.PRODUCT_ID = mLot.Product.ProductID;
 plan.PROCESS_ID = mLot.Process.ProcessID;

 // Add one to a Buffer if no time information is available.
 OutputMart.Instance.EqpLoadingPlan.AddBuffer(plan);
 }
 else
 {
 // If there is an information, write End time information and add it into a final output
 // Delete data in Buffer
 OutputMart.Instance.EqpLoadingPlan.RemoveBuffer(plan);
 plan.END_TIME = eqp.NowDT;

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#3f2cbdcc87a444c4b87085ab9899df48

MOZART STUDIO (ENG) 55

 plan.QTY = mLot.UnitQty;

 // Add it into Output data
 OutputMart.Instance.EqpLoadingPlan.Add(plan);
 }
}

Log performance : Decision of whether a processing time for saving Data Item should be recorded or not.

Call 'Execute' : This is used to execute DataActions that is not related to Schema

Model Download & AutoUpdate Configuration

This section explains the configuration steps to inquire and download the Job result files executed from MOZART Server to
MOZART Studio.

Server Configuration
In order to configure Model Download in MOZART Server, the root folder that saves the compressed Model files needs to be
designated, permission granted to delete the Model file from studio and password to delete the file needs to be set.

Designate root folder where Download Model in Server is saved
:[Designating Root Folder] Include the following lines in MozartServiceHost.exe.config file(located in the folder where
MOZART Server is installed) to designate root folder.

1) Configure a Root that a Model executed automatically by JobScheduler is saved in

Config Section : <appSettings>
Key : app-output-dir
Configuration example :

<appSettings>
 <add key="app-output-dir" value="D:\MOZARTServer\Models"/>
</appSettings>

MOZART STUDIO (ENG) 56

2) Configure a Root that a Model executed manually by developer or operator is saved.

 Config Section : <appSettings>
 Key : web-output-dir
 Configuration example :

<appSettings>
 <add key="web-output-dir" value="D:\MOZARTServer\ModelsManual"/>
</appSettings>

Configure where a Model in Server can be deleted from a client or not and set a password if a Model is deleted.

The compressed Model file in the server can be inquired through [File>Download Data From Server] menu in MOZART
Studio. The file can be deleted from the client and a password is required to delete the files. The password can be set
through MozartServiceHost.exe.config file by including the following lines. The Key and Section could be set through here.
Config Section : <appSetting>
Key : password
Configuration example :

<appSettings>
 <add key="password" value="MOZART"/>
</appSettings>

If "password" is not set, the compressed Model cannot be deleted from client.

Client Configuration
Client should designate a Server that Model is downloaded from and the folder for each Model that is saved in the
corresponding server. In order to configure this, first execute OOO_Studio that is purchased by each site and use
Tool>Options menu.

Select Downloads from the Tree at the left side.

Add Download site to the list at the right side. Press [+] button at the top to add the site.

MOZART STUDIO (ENG) 57

Name : This is a site name that is displayed in a combo box when a Model is downloaded.

SubDir : This is a name of a folder where Models are saved in Server. This is configured as a relative path with respect to
Model download base folder that is configured in the Server.

URL : This is a Service URL for Server that provides Model file download service. The format is same as the example
above. Input URL that is confirmed by user site's operating team. Generally Port and IP configuration can be different. This
should be checked with the operating manager after setting the server.

Multiple sites can be registered and the display order in Download window can be adjusted through the arrows at the top.

In order to modify information of the registered site, double-click or use [...] button at the top.

In order to delete any added object, use [-] button.

Like the above example, multiple folders in a single server can be registered or multiple servers can be registered. After
configuring like above, Model can be downloaded by using Model search window through [File >Download Data From
Server] menu from Studio.

When the menu is executed, a list of every registered server name is displayed in Download Server combo box like the
following figure. Then, select a Model file and press download button in order to download a specific Model from a list of
Models in the selected server.

Download Server: The name of the registered server showing the model download list.

MOZART STUDIO (ENG) 58

Auto, Manual: Indicates whether the model in the list is executed from the server or executed manually.

Refresh: Refreshes the model download list.

Delete: Deletes the selected models from the list.

Download Path: The location to download the model file.

Open Folder: Opens the file explorer to the location set in [Download Path].

Auto Classify: Indicates whether to create a folder with the name in [Download Server] to the location of [Download
Path] when downloading the model file.

Download: Downloads the selected models from the list.

X button: Cancels the model download. This button activates when model download starts.

Auto Update Setting
To update the client version automatically, the update files should be compressed and uploaded to the designated user group
specified server and the client should have the update server connection information. The client requests the server for any
updates and if the update exists the client will be updated. The update procedure is seen through the following figure.

In a company level, there could be a server machine already existing to distribute updates. Whether using an existing server or
a new server for Auto Update, the server should have IIS installed. The following explains how to configure Auto Update server.

[Server Requirements]
.NET Framework 4.0 or above

IIS (Internet Information Server) version 6 or above

[How to configure a Server]
1. Designate a folder where target files for update are saved.

2. Execute "IIS(Internet Information Service) Manager".

3. Add an Application Program Pool from [Application Program Pool -> Add Application Program Pool] menu. Set .Net
version to 4.0 (The name of application program can be defined as you wish. EX) MOZARTUpdateServer)

4. Add an Application Program from [Site -> Default Web Site -> Add Application Program] menu. Input value can be set
as below.

Alias : Input an alias for the application program to be registered. Alias is the name required when a Server URI is
entered in client. When Download URL value is configured in client, an input format like "host
address/[alias]/manifests.xml" is used.

Application program pool : Add Application Program Pool by clicking [Select] that was included from Step 3.

MOZART STUDIO (ENG) 59

Actual path : Designate a folder where target files for update is saved as explained in Step 1

5. Edit Mainfest through MainfestEditor. The file is located in [Update]r where MOZART Client installed. Please refer to How
to edit Manifest file, to find more details how to edit Mainfest.

6. An xml file will be generated. Copy the generated xml file to the update target folder. When this is done the setting on
server side is completed.

💡 Note
The port used from Default Web Site should be opened. In general, the port number is 80 but it could be blocked
according to the server setting. Error may occur when the port is blocked so make sure to check the port setting
during server configuration.

[How to configure client]
1. On the client side, AutoUpdate and Update Server can be configured through [Tool>Options] menu in the Studio.

2. Each configuration item can be configured as below.

Auto update : If checked, auto update is automatically activates according to the following input information. If not
checked, auto update is deactivated.

Application Id : Unique ID of Studio program. User should not modify this. When this is compared with Server's
manifests file, only update information for target Application is compared.

Download URL : Update Server's URL. The format should follow as below.
+ format: http://[SeverIP]/ [Alias of Application program used when Server is configured]/manifests.xml
+ [ServerIP], [Alias of Application program used when Server is configured] are required to be edited. Configure the
corresponding part after checking it with Client UI Development/Operating organization.

Downloader : Select a Downloader. Default is BITDownloader.

Parameters : Parameter used for Server authentication. This part does not need to be modified.

3. When Studio is restarted after items are configured, the following download window is activated.

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#fe0d907e96f14804a8ad099741ad9619

MOZART STUDIO (ENG) 60

Skip this version : Skips to check for any updates on the next start.

Remind me later : Asks to update the version on the next start.

Update : Download, updates the version and restarts the Studio.

Manifest Editor

Manifest Editor is an editor for creating/editing Manifest file. When MOZART Client is installed, ManifestEditor is also
installed in Updater folder subordinate to MOZART's installation path.

1. Run ManifestEditor.exe from the folder where server execution file is located. MainfestEditor consists of four tabs as
shown below.

MOZART STUDIO (ENG) 61

2. Fill in the information through Mainfest Properties Tab.

ManifestId : This has the same ID as the distribution ID that is changed whenever a new update file is distributed.
Client discerns whether AutoUpdate should be executed or not by comparing the corresponding ManifestId's value.
New GUID can be created through [Generate] button at the right side. It should be changed during each
distribution. (※xml document key = manifestId)

Title : Name of the corresponding Manifest file (※xml document key = title)

Version : Version of the distributed product. When it is distributed, update is executed according to its rule. (※xml
document key = version)

Release Note : Brief notifications about the fixes in the distributed version. This is updated according to the
distributed contents. (※xml document key = description)

Example of Manifest file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
manifestId="{AF7A3BD5-10A1-4155-BBF8-631906D86DAE}" mandatory="False" xmlns="urn:schemas-microsoft-com:PAG:updater-applicat
ion-block:v2:manifest">
 <title>FP Studio</title>
 <version>1.0.3</version>
 <description>first release</description>
 <application applicationId="{3A8F794F-D23A-484D-B766-98581D801DFD}">
 <entryPoint file="FP_Studio.exe" parameters="" />
 <location>.</location>
 </application>
 <files base="http://xxx.xxx.xxx.xxx/MOZARTUpdate" hashComparison="No">
 <file source="update-files.zip" transient="No" />
 </files>
 <activation>
 <tasks>
 <task type="MOZART.AutoUpdater.ActivationProcessors.WaitForApplicationExitProcessor, MOZART.AutoUpdater" name="WaitFo
rApplicationExitProcessor" />
 <task type="MOZART.AutoUpdater.ActivationProcessors.ApplicationDeployProcessor, MOZART.AutoUpdater" name="Application
DeployProcessor" />
 </tasks>
 </activation>
</manifest>

The above example can be found from [MOZART Client folder>Updater>Server] in manifests.xml file.

3. Fill in the information through Application Properties tab.
This configures information of applications to be updated. The mandatory configuration items are seen below.

MOZART STUDIO (ENG) 62

Application Properties
ApplicationId : This is a GUID of main update program and uses GUID in App.config file of the corresponding
target file. Two Guid should be always configured with the same value. (※xml document key =
application/applicationId)

Location : The location where the downloaded file is saved. (※xml document key = application/location)

Entry Point
File : Name of execution file. For instance, if update for FP_Studio is configured, the name should be set as
'FP_Studio.exe'. (※xml document key = application/entrypoint file)

Parameters : Parameter configured at execution. Seperate parameter is not necessary for Studio update.

Files
Files URI : To set URI where downloaded files are located. In general, the path set in local host is used for the
server. (※xml document key = files/base)

Source Folder : A local folder where the files are stored is selected.

Files : The section to input files to download from local folder. In normal cases, the compressed updated file is
selected. (※ xml document key = files/source)

How to Use Pivot Grid

You can create a pivot grid view through Open Item(Read-Only) function. Most of the miscellaneous (misc) functions
in the pivot grid view work exactly the same as in the grid view. This page explains the misc functions used from the
pivot grid view exclusively.

Pivot Grid Field List
A pivot grid field list is a window that shows the list of fields where you can move the field to the designated area to
compose a pivot grid. In general, when a field is moved to an area, it is reflected in the pivot grid view in an instant.
However, you can control whether to reflect the fields in the grid view immediately each time a field is moved to an area
or reflect in the grid view at the same time once all fields are moved to the area by using [Defer Layout Update]
option. When you enable the [Defer Layout Update] checkbox, the fields update to the grid view once you select
[Update] after you move all the fields you need to the designated area.

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#64f55b3652914b9fbcc78e741f1e0e3f
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#01b299ad87754bed9866f072902bc352

MOZART STUDIO (ENG) 63

You can also select and change the layouts of the pivot grid list by activating the [Customization Form Layout] button
on the top-right side of the window.

Keyboard Shortcuts
The context menu has keyboard shortcuts for common actions in Mozart Studio's grid view. menus with parentheses ()
are menus that can use the shortcut key.

MOZART STUDIO (ENG) 64

Export - E: Exports the data of the current grid table to an Excel file(xls or xlsx).

Field Option - O: Opens the menu to edit cell and value format.

Show Chart - C: Opens the chart wizard to draw charts.

Preferences - P: Opens the grid view preference setting menu.

Excel Export
The pivot grid view has a function to export the data to an Excel file while maintaining the pivot grid style. There are two
types of export types.

Excel Export Type
You can set the Excel export type from [Tool] > [Options] menu. When you open the [Preference] dialog, go to
[Setting] > [PivotOptions]. From there you will be able to choose the export type, DataWare or WYSIWYG.

Fig 1. Excel Export Setting Example

https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#c357110864d64461a6e8847e651b84b1
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8639e12d41fa48d99fa7f58b22c794c8
https://www.notion.so/30d6ad14a3ac476dbe9298df13c01330#8639e12d41fa48d99fa7f58b22c794c8
https://www.notion.so/11b39f61644f46698ce103e40d5d6966#27619ec4b9c2475e95e77ce9255568ce

MOZART STUDIO (ENG) 65

Once you set the export type, to export the pivot grid to an Excel file, first you need to create a pivot grid using [Open
Item (Read-Only)] command. When you are done creating the pivot grid, right-click on any part of the table, select
[Excport to Excel], and locate the path to save the file.

Excluding Filtered Column During Excel Export
If you set the Excel export type as WYSIWYG, the columns in the [Filter Field Area] are also extracted to the Excel
file. However, there is a way not to extract the filtered columns when exporting from the WYSIWYG type. In [Tool] >
[Options] > [Setting] > [PivotOptions], there is an option, [Except Filter Fields Name] where you can decide
whether to include the filtered columns or not when exporting the pivot grid to an Excel file. The default is set as
disabled so if you do not want to include the filtered columns, enable [Except Filter Fields Name].

Fig 2. DataWare and WYSIWYG

Fig 3. Pivot Grid Export to Excel Example

MOZART STUDIO (ENG) 66

Sum(Calculate)
Similar to the Sum function in the grid view control, the Sum function in the pivot grid view gives you the calculated
result of the selected numeric value cells based on the calculation formula you chose. However, unlike the grid view
control, you cannot change or add the summary from the pivot grid. Therefor e, you can obtain the calculated result
through Summary Control only.

Pivot Grid Preference
The view of all of the pivot grid view in MOZART Studio follows the settings done through [Tool] > [Options] >
[PivotOptions]. You can change the view of an individual pivot grid view through [Preferences] menu.

To use [Preferences], right-click on a cell, and select [Preferences] in the invoked menu. Then a menu where you can
change the view options will appear. See [Fig 7.].

Fig 4. Except Filter Fields Name Menu

Fig 5. Resultof Enable/Disable Excep Filter Fields Name Option

Fig 6. Pivot Grid Summary Control Example

https://www.notion.so/71cabfe4c8b54fd092375eee5835539e#cbbe79a5596541febf5d2c530aef0dd5
https://www.notion.so/11b39f61644f46698ce103e40d5d6966

MOZART STUDIO (ENG) 67

Print Data Headers
[Print Data Headers] specifies whether to include or exclude data headers when exporting the pivot grid data to Excel
worksheet.

Print Filter Headers
[Print Filter Headers] specifies whether to include or exclude filter headers when exporting the pivot grid data to Excel
worksheet.

Fig 7. Pivot Grid Preference

Fig 8. Prin Data Headers Example

MOZART STUDIO (ENG) 68

Print Column Headers
[Print Column Headers] specifies whether to include or exclude column headers when exporting the pivot grid data to
Excel worksheet.

Show Row Header
[Show Row Header] specifies whether to show or hide the column names in a pivot grid view and in Excel when
exported.

Show Row Totals
[Show Row Totals] specifies whether the sub-totals calculated for outer row fields are displayed.

Fig 9. Print Filter Headers Example

Fig 10. Print Column Headers Example

Fig 11. Show Row Header Example

MOZART STUDIO (ENG) 69

Show Row Grand Totals
[Show Row Grand Totals] specifies whether the summary totals calculated against all the rows are displayed.

Row Totals Location
[Row Totals Locations] specifies the location of the row and grand totals.

Far: Row totals and grand totals are displayed under the column field values.

Near: Row totals and grand totals are displayed above the column field values.

Tree: Row totals are displayed in a compact tree-like layout view.

Show Column Header
[Show Column Header] specifies whether the column headers are displayed or not.

Fig 12. Show Row Totals Example

Fig 13. Show Row Grand Totals Example

Fig 14. Row Totals Location Example

MOZART STUDIO (ENG) 70

Show Column Totals
[Show Column Totals] specifies whether the sub-totals calculated for outer column fields are displayed.

Show Column Grand Totals
[Show Column Grand Totals] specifies whether the summary totals calculated against all columns are displayed.

Column Totals Location
[Column Totals Location] specifies the location of the column totals.

Far: Column totals are displayed to the right of the column field values.

Near: Column totals are displayed to the left of the column field values.

Fig 15. Show Column Header Example

Fig 16. Show Column Totals Example

Fig 17. Show Column Grand Totals Example

Fig 18. Column Totals Location Example

MOZART STUDIO (ENG) 71

Show Filter Separator Bar
[Show Filter Separator Bar] specifies whether the horizontal line that separates the filter header area from the data
area and the column header area is displayed.

Sort By Summary Default Order
[Sort by Summary Default Order] specifies whether the default sorting order of the group rows and column are sorted
in either ascending or descending order. The default is sorting in ascending order.

Copy To Clipboard With Field Value
[Copy To Clipboard With Field Values] specifies whether the field values are copied to the Clipboard.

Fig 19. Show Filter Separator Bar Example

그림 20. Sort By Summary Default Order

MOZART STUDIO (ENG) 72

You can configure the copy & paste method by using Copy Tool.

Open Item (Read - Only)

[Open Item(Read-Only)] is a function in the [Project] menu, which creates a read-only grid view instance of the
selected data item(Inputs/Outputs). [Open Item] is a very helpful function for users who want to see a certain table from
various perspectives at the same time for analysis purposes. This is possible because [Open Item] can open multiple
views for a single data item and users can customize the layout and apply conditional formatting rules to each view.
[Open Item] function is available for grid tables and pivot grid tables.

Open Item Function List
Open Item Function List (1)

Menu Level 1 Menu Level 2 Description

Open Item Open Item(Read Only-Grid) Creates a view instance as a grid table style.

제목 없음 Open Item(Read Only-Pivot) Creates a view instance as a pivot grid table style.

How to Use

Open Item(Read Only-Grid)
To create a grid view instance of a data item, right-click on the data item and select [Open Item(Read Only-Grid)] in
the invoked context menu.

Fig 21. Copy To Clipboard With Field Values Example

https://www.notion.so/Open-Item-0c6d3eb0e5544e0f8f6042d5890bc872
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd
https://www.notion.so/3744458de4e447109fa6c7c07d8f625f
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd

MOZART STUDIO (ENG) 73

Open Item(Read Only-Pivot)
To create a grid view instance of a data item, right-click on the data item and select [Open Item(Read Only-Pivot)] in
the invoked context menu. Then, move the fields from the field list to Filter Area, Data Area, Column Area, and Row
Area. Once all the fields are distributed, click [Update] to create the pivot grid view.

When to Use Open Item

Multiple Views for One Data It
You can create multiple views for one data item. By this, you can customize the layout for each view as you prefer. You
can save the layout for one view using [Layout] command. In this case, the layout applies to the grid view opened

Fig 1. Example of Open Item(Read-Only-Grid)

Fig 2. Example of Open Item(Read-Only-Pivot)

MOZART STUDIO (ENG) 74

through [Open Item(Read Only-Grid)].

Multiple Pivot Grid View for One Data Item
You can also create multiple pivot grid view for one data item and assemble the fields for each view for its own
purpose.

MOZART STUDIO (ENG) 75

사용자 뷰 정의 및 사용
필터, 레이아웃 사용자 지정 및 공유 방법을 이용하여 사용자의 View를 생성 및 공유 할 수 있습니다.

Managing the View With Layout

What is Layout?
You might want to save the conditional formatting rules applied to the cells or layouts you customized just for yourself.
[Layout] menu provides the commands to enable you to save those changes and load the layouts whenever you
prefer to see them as well as resetting the layouts to default. There are two ways you can use the [Layout] commands,
either from [Manage View] menu from the toolbar or the [Layout] in the context menu. Commands from both menus
work the exact same. You can save your layouts for grid view and pivot grid view. These layouts can be saved
separately and the layout files are saved through %AppData%\mozart\XXX Studio\ViewInfo.

https://www.notion.so/13768200806d4d658dc1460b93618ab1

MOZART STUDIO (ENG) 76

💡 Manage Layout
The [Manage Layout] menu is available from and after 2022.122.0 version of Mozart Studio.
- Provides a tool to manage multiple layouts applied for the corresponding data item, grid view(Read Only-
Grid), or pivot grid view(Read Only-Pivot)
- Previously saved layouts before [Manage Layout] is effective are saved as ‘Old Layout’ and the file
extensions will be changed from .xml to .vgrid.
- Can import/export layouts (See)

Save Layout
Saves the current layout(column position, size, etc) of the grid view. A [Save Layout Dialog] appears where you can
give a name and description for the layout to be saved.

Save as: Saves a new layout. Uncheck the checkbox in [Save As] to overwrite the previously saved layout.

Default Layout: Sets as the default layout when the corresponding data item, grid view(Read Only-Grid), or pivot
grid view(Read Only-Pivot)

https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#37b316bf43f44522a0ab4b6c72e0465e
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#13d6ccc8ee554d94b6cfb67f23a5a315
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#37b316bf43f44522a0ab4b6c72e0465e
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#13d6ccc8ee554d94b6cfb67f23a5a315

MOZART STUDIO (ENG) 77

Layout Name: Name of the layout to be saved.

Description: Description of the layout to be saved.

Load Layout
Loads the default layout of the grid set in [Manage Layout] or [Save Layout].

Clear Layout
Restores the layout to its initial state.

Manage Layout
[Manage Layout] is a management tool that enables you to manage your saved layouts for each data item, grid
view(Read Only-Grid), and pivot grid view(Read Only-Pivot). You can edit, remove, apply the saved layouts from this
tool. The row in green color indicates the most recently applied layout. In addition, you can import layouts created by
other users or export your layout to share with other users through [Manage Layout].

APPLY: Applies the selected layout to the current view. You can use this command to reapply the saved layout in
case you restored the layout of the current view to its initial state using Clear Layout.

REMOVE: Removes the saved layout from the list. In case a layout is removed from the list while a view is
currently opened with the removed layout is applied does not immediately change the layout to another layout or to
its initial state. In this case, you need to close the view to apply the changes.

DEFAULT: Sets as the default layout when the corresponding data item, grid view(Read Only-Grid), or pivot grid
view(Read Only-Pivot)

Import/Export: Imports or Exports a layout for(of) the corresponding data item, grid view(Read Only-Grid), or
pivot grid view(Read Only-Pivot). The format of the layout file is .grid. If an identical layout(last modified date/time)
is imported, a confirmation message on whether to overwrite the existing layout will appear.

Input Dataset

What is Input Dataset?
[Input Dataset] is a new feature in Mozart Studio 2022.122.1 version where you can store and manage collections
of input data as a dataset from a single model. You can use [Save Input Dataset] to add input data to your dataset
collection and [Load Input Dataset] to load one of the stored input data. These two commands are in the context
menu of the Input DataGroup.

https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#37b316bf43f44522a0ab4b6c72e0465e
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#13d6ccc8ee554d94b6cfb67f23a5a315
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#37b316bf43f44522a0ab4b6c72e0465e
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#13d6ccc8ee554d94b6cfb67f23a5a315
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#37b316bf43f44522a0ab4b6c72e0465e
https://www.notion.so/d5372a386faf484ba2270a7b07c331bd#13d6ccc8ee554d94b6cfb67f23a5a315

MOZART STUDIO (ENG) 78

Save Input Dataset
[Save Input Dataset] compresses and saves the input data currently used by the model (*.vdata file in the Data
folder in the same location as the model file). In the process of compressing and saving data, the Dataset folder for
storing the compressed file and the DataInfos.xml file containing the information of the compressed file is created.

Dataset Directory: The location where the compressed dataset file is saved. The path cannot be modified, and
the Dataset folder is created in the same location as the currently open model file. 📂 button opens the
[DataSet Directory] through file explorer.

Save File Name The name of the file to save (Default name format: Data_Created Date/Time)

File Description: The description of the dataset.

Open Directory after Save: Indicates whether to open the [Dataset Directory] folder after saving the dataset.

Steps to Save Input Dataset]
1. Right-click on Inputs node to open the context menu, then select [Save Input Dataset] from the menu to open

the dialog.

2. Edit the name in [Save File Name] or just use the given default name.

3. (Optional) Type the description for the dataset in [File Description].

4. (Optional) Check [Open Directory after Save] to open the dataset folder after the file is saved.

MOZART STUDIO (ENG) 79

5. Select [Save] to save and compress the dataset.

Load Input Dataset
[Load Input Dataset] loads the input dataset selected from the dataset list of the model. The row marked in green
is the dataset currently used by the model, and you can check the dataset information in the Result information
generated after the model is executed.

Dataset Path: The location where the compressed dataset file is saved. The path is fixed and cannot open
other folders. 📂 button opens the [DataSet Directory] through file explorer.

File Name: The name of the dataset file

Create Time: The time and date when the dataset file is created.

Description: The description of the dataset file.

Load: Loads the dataset selected from the list.

Steps to Load Input Dataset
1. Right-click on Inputs node to open the context menu, then select [Load Input Dataset] from the menu to open

the dataset files list.

2. Double-click the row of the dataset to load from the list or select the row and then click the [Load] button to load
the dataset. The row of the loaded Input dataset is marked green.

Dataset Information in Result
 If you open the details of a result (double-click the left mouse button on the Result N node), the name of the
dataset used in the model is displayed in the Selected Inputs Dataset .

MOZART STUDIO (ENG) 80

Remarks
1. DataItems added directly from Mozart Studio are not subject to dataset saving/loading.

2. In order to modify or delete the dataset file, you must directly modify or delete the file from the dataset folder.
Modified or deleted file information is automatically updated in DatasetInfos.xml.

DataItem Import/Export
You can export and import the DataItem information from Mozart IDE or Mozart Studio. This function is useful when
you want to add a DataItem to an existing model to run a test for the new schema before applying it to the actual
operation. In addition, you can simply add a DataItem to your project by exporting the DataItem from another project
so you do not need to define the schema.

DataItem Import/Export Highlights

File Extension
The file extension of the DataItem information exported from Mozart IDE and Mozart Studio are as follows:

Individual DataItem file: vditem

Input or Output DataItem set: vditems

💡 Note
The file extension of DataItem for Mozart IDE and Mozart Studio is unified as vditem from 2021.119.1
version. If you are using a version below 2021.119.1, you can import the DataItem exported from Mozart IDE
to Mozart Studio by changing the file extension from vditem to vdinfo.

Context Menu
The DataItem import and export command can be found from the context menu of the selected DataItem. The given
commands are different depending on whether DataItem or DataGroup is chosen.

Import, Export > [DataItem(N)...]: Imports or Exports one or more DataItems. (vditem)

MOZART STUDIO (ENG) 81

Import, Export > [DataItems...]: Imports or Exports the entire Input or Output where the selected DataGroup
belongs to.

Exported/Imported Information
The following information will be exported or imported from the DataItem.

Schema information of the DataItem

DataAction script and settings

You can export/import DataSource from the DataSource context menu.

DataItem Export Example

Exporting Single DataItem

Exporting Multiple DataItems

MOZART STUDIO (ENG) 82

Exporting Vditems

MOZART STUDIO (ENG) 83

DataItem Import Example

Importing Single & Multiple DataItem(s)

MOZART STUDIO (ENG) 84

Importing Vditems

MOZART STUDIO (ENG) 85

To learn how to import the DataItem from Mozart Studio to Mozart IDE see, DataItem Import/Export

Extract Model DataItem(Schema) Information

The vmodel file contains information such as Input, Output data, execution option, query, and DB connection. There
are two ways you can get the information from Mozart Studio. One way is to get the information using [Schema Infos]
menu and the other way is to extract the information to an HTML file using [Report Schema] menu.

Schema Infos
Schema Infos] shows you the information of the DataItem, Database, and DataActions used by the model as a grid
table. [Schema Infos] menu is activated from [Model View] which requires Power or Admin user privileges.

https://www.notion.so/DataItem-Import-Export-06f24591ccaf47a1bd1387a91dd2a48c

MOZART STUDIO (ENG) 86

View Databases
[View Database] provides you the information of the Data Source(DB) registered in the model

MODEL_NAME : Name of the model

DS_NAME : Given name of the data source when registered to the model.

CON_NAME : Given name of the connection string in the data source.

DATA_SOURCE : The connection information(i.e IP adddress) of the data source.

USER_ID : User ID to get DB connection.

CONNECTION_STRING : The connection string information of the data source.

DESCRIPTION : Description about the data source.

View DataActions
[View DataActions] provides you the information of the data command used from the DataItem.

MOZART STUDIO (ENG) 87

MODEL_NAME : The name of the model where the DataAction belongs to.

CMD_TYPE : Specifies the the type of the data command. (text, bulkcopy, cvs, etc)

CATEGORY : The name of the data group where DataItem belongs to.

SCHEMA_NAME : The name of the DataItem.

DATAACTION_NAME : The name of the DataAction

CMD_NAME : The name of the data command in the DataAction.

MAIN_DB : The name of the main DB of the data source.

ALT_DS : The alternative name of the DB of the data source.

REAL_DS : The name of the connected data source.

CMD_TEXT : The data command script (query) of the DataAction.

View Schemas
[View Schemas] provides you the information of the DataItem in the model.

MODEL_NAME : The name of the model

DATA_LAYER : Specifies whether the DataItem is used for input or output.

CATEGORY : The name of the data group where the DataItem belongs to.

SCHEMA_NAME : The name of the DataItem.

COLUMN_NAME : Column name.

DATA_TYPE : The data type of the column.

DEFAULT_VALUE : The default value of the column.

ALLOW_NULL : Indicates whether the column can accept NULL values. 'Y' to pass NULL value; otherwise, 'N'.

IS_PRIMARY_KEY : Indicates if the column is a primary key or not.

HIDDEN : Indicates whether the column is a hidden column or not.

CAPTION : Caption

DESCRIPTION : The description regarding the specified column.

MOZART STUDIO (ENG) 88

Report Schema
The [Report Schema] menu extracts the DataItem, DataAction, and DataSource information in an HTML file format.
Unlike [Schema Infos], [Report Schema] does not require Power or Admin user privileges.

The document created from the menu contains all the data in the model as shown through the following example.

MOZART STUDIO (ENG) 89

How to Use Data Join

MOZART STUDIO (ENG) 90

Data joining is available from 2021.119.2 version and above. You can combine two or more DataItem sets using the
data join function in Mozart Studio. The types of data join provided are inner, outer left, outer right, and full join. Data
joining can be used from the view created from Open Item(Read-Only).

You can find the basic information of the actual data join from here.

Menus
[Data Join] command is composed by three sub-menus which are [Add Rule], [Manage Rules], [Reset Rules].

💡 Note
1. When no data sets are joined, [Manage Rules] and [Reset Rules] menus are deactivated.
2. One base DataItem can have one data join rule for each view.
3. You have to create a data join rule to join two tables first in order to add more tables to join.

Add Rule
[Add Rule] defines which data set to join and type of the data join.

① Join type : Provides the data join type to select.

② Model Tree : Shows the list of DataItems to join with the base DataItem.

③ Selected Data Item : Shows the columns of the selected DataItem from the list in ②. This is where you select
the columns to match the columns of the base DataItem.

④ Grid View Column : Shows the columns of the base DataItem and the columns of the DataItem that already
had been joined.

https://www.notion.so/Open-Item-Read-Only-d5372a386faf484ba2270a7b07c331bd
https://en.wikipedia.org/wiki/Join_(SQL)

MOZART STUDIO (ENG) 91

The topside of the view indicates which tables have been joined/
ex) Base_DataItem(+Join DataItem), Base_DataItem(+Number of tables joined)

"A. ", "B. ", "C. " represents the column of the joined table.

⑤ Column Mapping : The selected column from ③ to use to join the data.

[Preview] : Shows the preview of the joined data.

Manage Rules
[Manage Rules] is where you can modify the previously added data join rule. This menu is activated after a rule is
included through [Add Rules].

Reset Rules
[Reset Rules] deletes the added data join rule.

Adding/Editing Data Join Rule
This section will show examples of how to join two DataItems using [Add Rule] and [Manage Rule] command.

Adding Data Join Rule

MOZART STUDIO (ENG) 92

1. Select the base DataItem from the [Experiment View] and create a grid or pivot grid view using [Open Item
(Read-Only)] from the context menu.

2. Select any cell from the grid/pivot grid view and click the right button of the mouse to open the context menu.

3. Select [Data Join] from the context menu, then select [Add Rule] from the sub menu to open the data join dialog.

4. Select the DataItem to join from ② and select the data join type from ①.

5. Select the column from ③ to set the join condition for the subset data.

Drag the column in area ③ to area ⑤ where the column name matches. Otherwise, double click the field in ③
which will automatically set to ⑤ where the column name matches.

Right click on the column in ⑤ to remove the join condition.

6. Press [OK] button to go to the next step. Then, select the columns to show on the grid/pivot grid view. The column
name with an alias (i.e. A.ColumnName) is the column from the DataItem selected from ②.

7. Once all columns to show are selected, press [OK] to complete the data join rule setting.

8. Once a rule to join two tables are created, you can add more tables to join by going through step 2~7.

Inner Join Example

MOZART STUDIO (ENG) 93

Managing Data Join Rules
This section will show examples of how to check, modify and delete data join rule using [Manage Rules] menu.

Check Data Join Rule
Once a data join is created for a view, you can always check the join condition through [Manage Rules] from the
context menu.

Editing Data Join Rule

Example of setting inner join rule with two tables.

MOZART STUDIO (ENG) 94

Changing Join Type

1. Open the data join rule by selecting [Manage Rules] from the context menu of the view.

2. Select the join type from ④. Selecting "blank" removes the table for joining.

3. Press [OK] button to save the changes.

Changing the Set Data Condition

1. Open the data join rule by selecting [Manage Rules] from the context menu of the view.

2. Configure the columns in area ⑤ to add/change/remove the set data condition. Remove all mapping columns from
a table to dispart from the joined table.

Removing Data Join Rule
Select [Reset Rules] from the sub menu of [Data Join] context menu to clear the data join rule and recover the view to
its default state.

